Cho tam giac abc co ab =9 ac=12 bc=15 chung minh abc la tam giac vuong
cho tam giac ABC co AB=6cm,AC=8cm,BC=10cm.a,chung minh tam giac ABC vuong b,ke trung tuyen Am.goi G la trong tam cua tam giac ABC. tinh AG
Giải:
a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )
b, \(\Delta ABC\) vuông tại A có AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)
Mà \(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)
Vậy...
De bai : Cho tam giac ABC co AB=9 cm,BC=12 cm,BC=15 cm
a,C/m tam giac ABC vuong
b,Duong phan giac cua goc B cat AC tai D . Tinh AD,DC
c,Duong cao AH cat BD tai I. Chung minh IH.BD=IA.IB
d,Chung minh tam giac AID can
a. Xét tam giác ABC có:
AC2 + AB2 = 122 +92 = 144 + 81 =225 (cm)
BC2 = 152 = 225 (cm)
Suy ra: AC2 + AB2 = BC2
=> Tam giác ABC vuông tại A
b.
Ta có AD là phân giác của góc B
=> \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\) ( Tính chất đường phân giác trong tam giác)
\(\Leftrightarrow\dfrac{DA}{DC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{3}{2}\)
Suy ra: \(\dfrac{DA}{3}=\dfrac{3}{2}\Rightarrow DA=\dfrac{3.3}{2}=4,5\)
\(\dfrac{DC}{5}=\dfrac{3}{2}\Rightarrow DC=\dfrac{5.3}{2}=7,5\)
Vậy: DA = 4,5 (cm) và DC = 7,5(cm)
cho tam giac ABC co AB=AC Am la tia phan giac cua am thuoc bc ke mh vuong goc ab tai h mk vuong goc ac tai k chung minh m la trung diem cua bc chung minh am vuong goc bc tai m
Cho tam giac ABC co canh AB=24cm,AC=18cm,BC=30cm.Ke duong cao AK.Ke KP\(\perp\)AC. a,Chung minh tam giac ABC la tam giac vuong. b,Tinh do dai AK,BK. c,Chung minh AP.AC=AB2-KB2. d,Chung minh AP.AC=KB.KC=PK.AB.
cho tam giac ABC co AB = 3cm AC = 4cm BC =5cm ke duong thang AH
chung minh tam giac ABC vuong
tren canh BC lay D sao cho BD=BA tren canh AC lay diem E sao cho AE=AH
goi F la giao diem cua DE va AH chung minh
DE vuong AC
tam giac ACF can
BC+AH> AC+AB
Cho tam giac ABC co AB=AC tia phan giac cua goc A cat BC tai M .Chung minh
tam giac ABC=TAM GIAC ACM
M la trung diem cua BC
AM vuong goc voi BC
CMR tam giác ABM = ACM
Vì \(AB=AC\Rightarrow\Delta ABC\) cân tại \(A\) \(\Rightarrow\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM-\Delta ACM\) có :
\(AB=AC\left(gt\right)\)
\(BM=CM\) ( do AM là tia phân giác )
\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)
Vì \(\Delta ABM=\Delta ACM\Rightarrow BM=CM\) ( cạnh tương ứng )
\(\Rightarrow M\) là trung điểm của BC
\(\widehat{ABM}+\widehat{ACM}=180^0_{ }\)
\(\widehat{ABM}=\widehat{ACM}=\dfrac{180}{2}=90^0_{ }\)
\(\Rightarrow AM\perp BC\)
Cho tam giac abc co ab =9, ac=12, bc=15, ke ah vuong bc tai h, hd vuong ab tai d he vuong ac tai e cm : a,tam giac abc vuong,b,bd2+hd2+hc2=
Cho tam giac ABC co AB=9cm, AC=12cm, BC=15cm
a) Chung minh ABC la tam giac vuong
b) Tren canh BC lay diem D sao cho CD=CA, qua D ve duong thang vuong goc voi BC cat AB tai E va cat duong thang AC tai F. Chung minh AB=DF.
c) Chung minh tia CE la tia phan giac goc ACB.
d) So sanh AE va BE
Tam giac ABC, BA=BC=10, AC=12, BI vuong goc voi AC, IH vuong goc voi AB, IK vuong goc voi BC
a, chung minh tam giac AIB=tam giac CIB
b, chung minh IB la phan giac goc HIK
c, tinh IB
d, chung minh HK song song AB