Những câu hỏi liên quan
LH
Xem chi tiết
LH
28 tháng 7 2016 lúc 19:00

Mình đã làm lâu rồi nhưng Online Math lỗi nên mình phải cắt, ghép vào paint cho bạn.

undefined

undefined

Bình luận (0)
KD
2 tháng 2 2018 lúc 20:18

sao tam giac adc can tai a

can tai c ma

Bình luận (0)
CL
Xem chi tiết
NT
26 tháng 12 2023 lúc 19:43

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMEC

=>AB=EC

Ta có: ΔMAB=ΔMEC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

b: Ta có: AB//CE

AB\(\perp\)AC

Do đó: CE\(\perp\)CA

=>ΔCAE vuông tại C

c: Xét ΔABC vuông tại A và ΔCEA vuông tại C có

CA chung

AB=CE

Do đó: ΔABC=ΔCEA

d: ta có: ΔABC=ΔCEA

=>BC=EA

mà \(AM=\dfrac{1}{2}EA\)

nên \(AM=\dfrac{1}{2}BC\)

e: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BE

f: Xét ΔMHC và ΔMKB có

MB=MC

\(\widehat{MBK}=\widehat{MCH}\)

BK=CH

Do đó: ΔMHC=ΔMKB

=>\(\widehat{HMC}=\widehat{KMB}\)

mà \(\widehat{KMB}+\widehat{KMC}=180^0\)(hai góc kề bù)

nên \(\widehat{HMC}+\widehat{KMC}=180^0\)

=>K,M,H thẳng hàng

Bình luận (0)
NQ
25 tháng 12 2023 lúc 21:23

a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều. 

Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.

 

b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ. 

Vì AB // EC, nên góc BAC = góc ECA. 

Vậy tam giác ACE cũng là tam giác vuông tại C.

 

c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A). 

Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.

 

d) Ta đã biết M là trung điểm của BC, vậy BM = MC. 

Vì MA = ME, nên MA = MC/2. 

Do đó, AM = 1/2 BC.

 

e) Ta đã biết AB = EC và AB // EC. 

Vì MA = ME, nên MA = MC. 

Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng. 

Vậy AC = BE và AC // BC.

 

f) Trên BE lấy K, trên AC lấy H sao cho BK = CH. 

Vì M là trung điểm của BC, nên MK = MC/2. 

Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ. 

Vậy góc MCK = 60 độ. 

Vì BK = CH, nên góc BKC = góc CHB. 

Vậy góc BKC = góc CHB = 60 độ. 

Vậy tam giác BKC và tam giác CHB là hai tam giác đều. 

Vậy 3 điểm K, M, H thẳng hàng.

Bình luận (0)
NM
Xem chi tiết
NM
Xem chi tiết
BT
Xem chi tiết
H24
27 tháng 12 2015 lúc 8:31

Lấy D ∈ AE sao cho AD = AC => DE = AB và ∆DAC đều
Xét ∆ABC và ∆DEC có:
+ AB = DE
+ góc BAC = góc EDC = 120º (bạn tự chứng minh)
+ AD = DC
=> ∆ABC = ∆DEC(c.g.c) => BC = EC và góc ACB = góc DCE
=> góc ACB + góc BCD = góc DCE + góc BCD
=> góc ECB = góc ACD = 60º
Xét ∆BEC có BC = EC và góc ECB = 60º => ∆BEC là tam giác cân có 1 góc = 60º
=> ∆BEC là tam giác đều.

Bình luận (0)
YP
Xem chi tiết
NT
29 tháng 3 2021 lúc 21:57

a) Xét ΔABC vuông tại A và ΔADE vuông tại A có 

AB=AD(gt)

AC=AE(gt)

Do đó: ΔABC=ΔADE(hai cạnh góc vuông)

Bình luận (0)

.

Bình luận (0)
MT
Xem chi tiết
NT
29 tháng 7 2017 lúc 17:22

ahihi DồKết quả hình ảnh cho ban làm rớt nà     ahihi đồ chó

Bình luận (0)
MT
30 tháng 7 2017 lúc 6:56

bn có bị j ko z

Bình luận (0)
IN
Xem chi tiết
su
13 tháng 2 2020 lúc 13:37

a) Xét tam giác ABD có :

AB = AD (gt)

Suy ra tam giác ABD cân tại BAD

Suy ra góc ABD = góc ADB ( 2 góc đáy)

Ta có : góc BAD + góc CAD = góc BAC

mà góc BAC = 120 độ ; góc BAD =góc CAD (gt)

Suy ra 2BAD= 120 độ 

Suy ra BAD= 120 độ chia 2

Suy ra BAD =60 độ 

Ta lại có tam giác BAD cân tại BAD

Suy ra BDA =DBA =(180 độ - BAD) chia 2

mà BAD = 60 độ 

Suy ra BDA=DBA= (180 độ - 60 độ ) chia 2

Suy ra BDA=DBA = 60độ 

Xét tam giác BDA có 

BDA=DBA=BAD=60 độ 

Suy ra tam giác BDA đều

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
DT
7 tháng 4 2022 lúc 14:24

help meeeee

Bình luận (0)
DT
7 tháng 4 2022 lúc 14:24

mình cần trước thứ 6

Bình luận (0)
LD
7 tháng 4 2022 lúc 15:47

a, Xét ΔABC và ΔADE có :

\(\widehat{EAD}=\widehat{BAC}=90^0\)
\(AB=AD\left(gt\right)\)

\(AE=AC\left(gt\right)\)

\(\Rightarrow\Delta ABC=\Delta ADE\left(2cgv\right)\)

b, Ta có : \(AE=AC\left(gt\right)\)

\(\Rightarrow\) ΔACE cân tại A

\(\Rightarrow\widehat{AEC}=\widehat{ACE}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-90^0}{2}=45^0\left(đpcm\right)\)

Bình luận (0)