cho tam giác ABC có A=90 độ. Lấy E trên phân giác của A sao cho AE=AB+AC. CM tam giác ACE đều
Cho tam giác ABC có Â= 120 độ. Trên tia phân giác của góc A, lấy điểm E sao cho AE=AB+AC. Cm tam giác BCE đều
Mình đã làm lâu rồi nhưng Online Math lỗi nên mình phải cắt, ghép vào paint cho bạn.
sao tam giac adc can tai a
can tai c ma
cho tam giác ABC có góc A=90 độ;AB<AC. gọi M là trung điểm của BC trên tia đối của tia MA lấy E sao cho MA=ME.
a) cm AB=EC VÀ AB // EC
b) cm tam giác ACE vuông tại C
c)cm tam giác ABC và TAM GIÁC CEA
D) CM AM=1/2 BC
E) CM AC=BE VÀ AC // BC
F)TRÊN BE lấy K, trên AClấy H sao cho BK=CH. CM 3 ĐIỂM K,M,H THẲNG HÀNG
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
=>AB=EC
Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
b: Ta có: AB//CE
AB\(\perp\)AC
Do đó: CE\(\perp\)CA
=>ΔCAE vuông tại C
c: Xét ΔABC vuông tại A và ΔCEA vuông tại C có
CA chung
AB=CE
Do đó: ΔABC=ΔCEA
d: ta có: ΔABC=ΔCEA
=>BC=EA
mà \(AM=\dfrac{1}{2}EA\)
nên \(AM=\dfrac{1}{2}BC\)
e: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
f: Xét ΔMHC và ΔMKB có
MB=MC
\(\widehat{MBK}=\widehat{MCH}\)
BK=CH
Do đó: ΔMHC=ΔMKB
=>\(\widehat{HMC}=\widehat{KMB}\)
mà \(\widehat{KMB}+\widehat{KMC}=180^0\)(hai góc kề bù)
nên \(\widehat{HMC}+\widehat{KMC}=180^0\)
=>K,M,H thẳng hàng
a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều.
Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.
b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ.
Vì AB // EC, nên góc BAC = góc ECA.
Vậy tam giác ACE cũng là tam giác vuông tại C.
c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A).
Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.
d) Ta đã biết M là trung điểm của BC, vậy BM = MC.
Vì MA = ME, nên MA = MC/2.
Do đó, AM = 1/2 BC.
e) Ta đã biết AB = EC và AB // EC.
Vì MA = ME, nên MA = MC.
Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng.
Vậy AC = BE và AC // BC.
f) Trên BE lấy K, trên AC lấy H sao cho BK = CH.
Vì M là trung điểm của BC, nên MK = MC/2.
Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ.
Vậy góc MCK = 60 độ.
Vì BK = CH, nên góc BKC = góc CHB.
Vậy góc BKC = góc CHB = 60 độ.
Vậy tam giác BKC và tam giác CHB là hai tam giác đều.
Vậy 3 điểm K, M, H thẳng hàng.
Cho tam giác ABC có góc BAC = 90 độ ( AB < AC ) Tia phân giác góc B cắt AC tại D.Trên cạnh BC lấy E sao cho BE = AB
a) CM : tam giác ABD = tam giác EBD
b) CM : BD vuông góc với AE
c) Trên tia đối của AB lấy K sao cho BK = BC CM : K, D, E thẳng hàng
Cho tam giác ABC có góc BAC = 90 độ ( AB < AC ) Tia phân giác góc B cắt AC tại D. Trên cạnh BC lấy E sao cho BE = AB
a) CM : tam giác ABD = tam giác EBD
b) CM : BD vuông góc với AE
c) Trên tia đối của AB lấy K sao cho BK = BC CM : K, D, E thẳng hàng
cho tam giác ABC có góc A = 120 độ. Trên tia phân giác của góc A, lấy điểm E sao cho AE= AB + AC. Chứng minh tam giác BCE là tam giác đều.
Lấy D ∈ AE sao cho AD = AC => DE = AB và ∆DAC đều
Xét ∆ABC và ∆DEC có:
+ AB = DE
+ góc BAC = góc EDC = 120º (bạn tự chứng minh)
+ AD = DC
=> ∆ABC = ∆DEC(c.g.c) => BC = EC và góc ACB = góc DCE
=> góc ACB + góc BCD = góc DCE + góc BCD
=> góc ECB = góc ACD = 60º
Xét ∆BEC có BC = EC và góc ECB = 60º => ∆BEC là tam giác cân có 1 góc = 60º
=> ∆BEC là tam giác đều.
Cho tam giác ABC vuông tại A ( ab lớn hơn AC) Trên tia đối của tia ac lấy điểm D sao cho AD = ab Trên tia đối của AB lấy điểm E sao cho ae = AC Chứng minh a tam giác ABC bằng tam giác ade b aec=ace=45 độ
a) Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔABC=ΔADE(hai cạnh góc vuông)
Bài 1:cho tam giác ABC có AB<AC , AD là tia phân giác. trên AC lấy điểm E sao cho AE=AB.
cm a, tam giác ABD=tam giác AED.
b,trên tia AB lấy điểm F sao cho AF=AC.cm góc FBD= góc CED.
c, AD vuông góc với CF
d, DF=DC
e,BE song song với CF
f,3 điểm F,D,E thẳng hàng
Bài 2: cho tam giác ABC có góc A = 90 độ BD là phân giác của góc B( D thuộc AC. vẽ DE vuông góc với BC. gọi E là giao điểm của AB và AE.
a, cm tam giác ABD= tam giác EBD.
b, cm BD vuông góc với AE tại trung điểm AE
c, cm tam giác DCF cân
d, khi tam giác ABC có góc B=60 độ, BC=12 cm . tính DC
giúp mk nha cảm ơn các bn
Cho tam giác ABC có góc A =120 độ, kẻ Ax là tia phân giác của góc A. Trên tia Ax lấy điểm E sao cho AB+AC=AE. Trên tia Ax lấy D sao cho AB=AD. Chứng minh:
a/ Tam giác ABD đều
b/ Tam giác ABC = Tam giác DBE
c/ Tam giác BCE đều.
a) Xét tam giác ABD có :
AB = AD (gt)
Suy ra tam giác ABD cân tại BAD
Suy ra góc ABD = góc ADB ( 2 góc đáy)
Ta có : góc BAD + góc CAD = góc BAC
mà góc BAC = 120 độ ; góc BAD =góc CAD (gt)
Suy ra 2BAD= 120 độ
Suy ra BAD= 120 độ chia 2
Suy ra BAD =60 độ
Ta lại có tam giác BAD cân tại BAD
Suy ra BDA =DBA =(180 độ - BAD) chia 2
mà BAD = 60 độ
Suy ra BDA=DBA= (180 độ - 60 độ ) chia 2
Suy ra BDA=DBA = 60độ
Xét tam giác BDA có
BDA=DBA=BAD=60 độ
Suy ra tam giác BDA đều
Câu 18 (2,5 điểm). Cho tam giác ABC vuông tại A (AB > AC). Trên tia đối của tia AC lấy điểm D sao cho AD = AB, trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh:
a)tam giác ABC =tam giác ADE.
b) AEC=ACE= 45 độ
a, Xét ΔABC và ΔADE có :
\(\widehat{EAD}=\widehat{BAC}=90^0\)
\(AB=AD\left(gt\right)\)
\(AE=AC\left(gt\right)\)
\(\Rightarrow\Delta ABC=\Delta ADE\left(2cgv\right)\)
b, Ta có : \(AE=AC\left(gt\right)\)
\(\Rightarrow\) ΔACE cân tại A
\(\Rightarrow\widehat{AEC}=\widehat{ACE}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-90^0}{2}=45^0\left(đpcm\right)\)