y''' - 3y'' + 3y' - y = 0
\(tính M= { 2x-3y/2x+3y} với x^2-2xy=3y^2 x+y khác 0, y khác 0 2x+3 khác 0\)
|x-3y| ^2007+ |y+4| ^2008 < hoặc = 0|x-3y| ^2007+ |y+4| ^2008 < hoặc = 0
1. Phương trình tiếp tuyến d của đường tròn (C): \(x^2+y^2-3x-y=0\) tại điểm N(1;-1) là:
A. \(d:x+3y-2=0\) B. \(d:x-3y+4=0\)
C. \(d:x-3y-4=0\) D. \(d:x+3y+2=0\)
2. Cho đường tròn (C): \(x^2+y^2-4x+4y-4=0\) và điểm M(1;0). Dây cung của (C) đi qua điểm M có độ dài ngắn nhất bằng:
A. \(2\sqrt{3}\) B. \(\sqrt{5}\) C. 12 D. \(2\sqrt{7}\)
3. Lập phương trình chính tắc của parabol (P) biết (P) đi qua điểm M có hoành độ \(x_M=2\) và khoảng từ M đến tiêu điểm là \(\dfrac{5}{2}\)
A. \(y^2=8x\) B. \(y^2=4x\) C. \(y^2=x\) D. \(y^2=2x\)
Cho hệ phương trình 2 3 x − 9 y + 6 x + y = 3 4 x − 3 y − 9 x + y = 1 y ≥ 0 ; x ≠ 3 y .
Nếu đặt 1 x − 3 y = a ; 1 x + y = b ta được hệ phương trình mới là:
A. 1 2 a + 1 6 b = 3 1 4 a − 1 9 b = 1
B. 2 a + 6 b = 3 4 a − 9 b = 1
C. 2 b + 6 a = 3 4 b − 9 a = 1
D. 2 3 a + 6 b = 3 4 a − 9 b = 1
Ta có 2 3 x − 9 y + 6 x + y = 3 4 x − 3 y − 9 x + y = 1 ⇔ 2 3 . 1 x − 3 y + 6. 1 x + y = 3 4. 1 x − 3 y − 9. 1 x + y = 1
Đặt 1 x − 3 y = a ; 1 x + y = b ta được hệ phương trình 2 3 a + 6 b = 3 4 a − 9 b = 1
Đáp án: D
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
a) \(2x^2+3y>0\)
b) 2x + \(3y^2\le0\)
c) 2x + 3y > 0
d) \(2x^2-y^2+3x-2y< 0\)
e) 3y < 1
f) x - 2y \(\le1\)
g) x \(\le0\)
h) y > 0
i) 4(x-1) + 5(y-3) > 2x - 9
Bất phương trình bậc nhất 2 ẩn :
\(2x+3y>0\Rightarrow Câu\) \(C\)
\(x-2y\le1\Rightarrow Câu\) \(f\)
\(4\left(x-1\right)+5\left(y-3\right)>2x-9\)
\(\Leftrightarrow4x-4+5y-15-2x+9>0\)
\(\Leftrightarrow2x+5y-10>0\) \(\Rightarrow Câu\) \(i\)
Tìm x, y, z biết (2x-3y)^2018+(3y-4z)^2020+|2x+3y-z-63|=0
Ta có: \(\left\{{}\begin{matrix}\left(2x-3y\right)^{2018}\ge0\forall x,y\\\left(3y-4z\right)^{2020}\ge0\forall y,z\\\left|2x+3y-z-63\right|\ge0\forall x,y,z\end{matrix}\right.\)
\(\Rightarrow\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|\ge0\forall x,y,z\)
Mà: \(\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|=0\)
nên: \(\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\2x+3y-z-63=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\z=2x+3y-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=4z\\3y=4z\\z=4z+4z-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4z:2\\y=4z:3\\z=8z-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=4z:3\\-7z=-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=4\cdot9:3=12\\z=9\end{matrix}\right.\)
Vậy \(x=18;y=12;z=9\).
$Toru$
cho hpt x - 3y =0, (a - 1)x - 3y =2 (a là tham số)
tìm a để hpt có nghiệm (x,y) sao cho x>0, y>0
\(\left\{{}\begin{matrix}x-3y=0\\\left(a-1\right)x-3y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\\left(a-2\right)x=2\end{matrix}\right.\)
Với \(a=2\) hệ vô nghiệm (ktm)
Với \(a\ne2\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{2}{a-2}\\y=\dfrac{x}{3}=\dfrac{2}{3\left(a-2\right)}\end{matrix}\right.\)
Để x>0; y>0
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{a-2}>0\\\dfrac{2}{3\left(a-2\right)}>0\end{matrix}\right.\) \(\Rightarrow a-2>0\Rightarrow a>2\)
(2x-8)^4+(3y+45)^2=0
(2x-10)^6+(x+y-7)^4=0
(5x-15)^8+(2x-y+4)^4=0
(2x-8)^4+(3y+45)^2=0
* a mũ 2 hay 4 hay 6 ,... ( những số tự nhiên chẵn khác 0 ) đều lớn hơn hoặc bằng 0 với mọi a
Áp dụng :
a) (2x-8)^4 + (3y+45)^2 = 0
Vì : (2x-8)^4 >=0 , (3y+45)^2 >=0 với mọi x,y
=> (2x-8)^4 + (3y+45)^2 >=0
Dấu "=" xảy ra khi : 2x-8=3y+45=0
->(x;y)=(4;-15)
Những câu sau làm tương tự, ta được :
b) ...
Dấu "=" xảy ra khi : 2x-10=0 và x+y-7=0
->x=5 và 5+y-7=0
->(x;y)=(5;2)
c) 5x-15=0 và 2x-y+4=0
->x=3 và 6-y+4=0
->(x;y)=(3;10)
d) Trùng câu a
a)x=4,y=-15
b)x=5,y=2
còn câu c) mik chịu
Cho x−4 y−7 z3 .Tính giá trị biểu thức A −2x y 5z2x−3y−6z với x,y,z khác 0 và 2x 3y 6z khác 0