Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DV
Xem chi tiết
NN
Xem chi tiết
LV
Xem chi tiết
TH
28 tháng 2 2023 lúc 21:05

Số dư = 0

Bình luận (0)
TH
28 tháng 2 2023 lúc 21:05

cần giải thích k

 

Bình luận (0)
HT
Xem chi tiết
VN
11 tháng 3 2017 lúc 20:34

Ta có:

        72004=74.501=A1

      =>A1:10=(A0+1):10=B0+1=B1=>72004:10 dư 1

        32003=34.500+3=34.500+33=C1+27=D8:10 dư 8

 
Bình luận (0)
NA
6 tháng 3 2017 lúc 21:52

Ta xét chữ số tận cùng của 72004 và 32003

ta có: 72004 = 74.501 = (.....1)501 = .........1 => tận cùng là 1 => chia 10 dư 1

ta có: 32003 = 34.500+3 = (......1)500 . 33 = (........1) . 27 = ......7 => tận cùng là 7 => chia 10 dư 7

Vậy: 72004 chia 10 dư 1 ; 32003 chia 10 dư 7

Bình luận (0)
NC
Xem chi tiết
PH
12 tháng 10 2016 lúc 16:48

20032004 khi chia cho 2001 số dư là 1591

Bình luận (0)
LM
Xem chi tiết
AH
12 tháng 8 2021 lúc 1:06

Lời giải:
Theo định lý Fermat thì:

$2002^{18}\equiv 1\pmod {19}$

$\Rightarrow (2002^{18})^{111}.2002^5\equiv 2002^5\pmod {19}$

$2002\equiv 7\pmod {19}$

$\Rightarrow 2002^5\equiv 7^5\equiv 11\pmod {19}$

Vậy $2002^{2003}$ chia $19$ dư $11$

Bình luận (0)
VQ
Xem chi tiết
ND
Xem chi tiết
TL
7 tháng 12 2017 lúc 22:02

Gọi a là số cần tìm

Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)

Vì a chia 2003 dư 32  suy ra a = 2003q + 32(q thuộc N)

Suy ra 2001p+23=2003q+32              

          2001p-2001q=2q+32-23

         2001(p-q)=2q+9

Suy ra 2q+9 chia hết cho 2001

Mà a nhỏ nhất thì q nhỏ nhất

Nếu 2q+9=2001 suy ra q=996(chọn)

Với q=996 suy ra a=996 x 2003+32=1995020

Vậy số cần tìm là 1995020      

Bình luận (0)
TA
Xem chi tiết
H24
15 tháng 4 2017 lúc 21:40

Giải:Ta có: 20012 ≡ 4 (mod 2003) ⇒ 200110 ≡ 1024 (mod 2003) ⇒ 200120 ≡ 1007 (mod 2003) ⇒ 200140 ≡ 10072 ≡ 531 (mod 2003) ⇒ 200140.200110 ≡ 1024.531≡ 931 (mod 2003) 200150 ≡ 931 (mod 2003) ⇒ 2001100 ≡ 9312 ≡ 1465 (mod 2003) ⇒ 2001200 ≡ 14652 ≡ 1012 (mod 2003) ⇒ 2001400 ≡ 10122 ≡ 611 (mod 2003) ⇒ 2001400 . 2001100 ≡ 611.1465 ≡ 1777 (mod 2003) 2001500 ≡1777 (mod 2003) ⇒ 20011000 ≡ 17772 ≡ 1001 (mod 2003) ⇒ 20012000 ≡ 10012 ≡ 501 (mod 2003) ⇒ 20012000 . 200110 ≡ 501.1024 ≡ 256 (mod 2003) 20012010 ≡256 (mod 2003)Vậy : 20012010 chia cho 2003 có số dư là 256

 

Bình luận (0)