Những câu hỏi liên quan
PB
Xem chi tiết
CT
22 tháng 2 2019 lúc 4:00

Chọn B.

Phương pháp:

Biến đổi đẳng thức đã cho để đưa về dạng phương trình đường tròn (C) tâm I bán kính R.

Từ đó ta đưa bài toán về dạng bài tìm M x ; y ∈ C  để O M - a lớn nhất hoặc nhỏ nhất.

Xét các trường hợp xảy ra để tìm a.

Cách giải: 

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 4 2018 lúc 8:23

Bình luận (0)
TK
Xem chi tiết
TG
20 tháng 12 2021 lúc 20:43

\(P=-x^2-y^2+4x-4y+2=-\left(x^2-4x+4\right)-\left(y^2+4y+4\right)+10=-\left(x-2\right)^2-\left(y+2\right)^2+10\le10\)

Dấu = xảy ra khi x = 2; y = -2

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 6 2017 lúc 16:30

Đường tròn đã cho có tâm  I( - 4; -3).

Để đường thẳng ∆ cắt đường tròn theo dây cung dài nhất thì điểm I nằm trên ∆.

Suy ra:  3. (-4) – 4. (-3) + m = 0

⇔ − 12 + ​ 12 + ​ m = 0    ⇔ m = 0

Đáp án A

Bình luận (0)
NH
Xem chi tiết
NT
18 tháng 7 2021 lúc 15:43

undefinedundefined

Bình luận (1)
NT
18 tháng 7 2021 lúc 23:20

Bài 6:

a) Ta có: \(A=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu '=' xảy ra khi x=3

b) Ta có: \(B=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi x=-4

c) Ta có: \(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Bình luận (0)
NT
18 tháng 7 2021 lúc 23:21

Bài 7:

a) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 6 2017 lúc 12:42

Ta xét các phương án:

(I) có: 

(II) có:

(III) tương đương : x2+ y2 – 2x - 3y + 0,5= 0.

phương trình này có:

Vậy chỉ (I) và (III) là phương trình đường tròn.

Chọn D.

Bình luận (0)
D5
Xem chi tiết
KN
1 tháng 9 2020 lúc 13:22

\(A=15-8x-x^2=-\left(x+4\right)^2+31\)

Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+31\le31\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x=-4\)

Vậy maxA = 31 <=> x = - 4

\(B=4x-x^2+2=-\left(x-2\right)^2+6\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2+6\le6\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy maxB = 6 <=> x = 2

Bình luận (0)
 Khách vãng lai đã xóa
HT
1 tháng 9 2020 lúc 14:15

a) \(A=15-8x-x^2=-\left(x^2+8x+16\right)-1\)

\(=-\left(x+4\right)^2-1\le-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left(x+4\right)=0\Rightarrow x=-4\)

b) \(B=4x-x^2+2=-\left(x^2-4x+4\right)+6\)

\(=-\left(x-2\right)^2+6\le6\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)

c) Trang nghĩ nên sửa đề nhé:

\(C=-x^2-y^2+4x+4y+2\)

\(C=-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+10\)

\(C=-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x-2\right)^2=0\\-\left(y-2\right)^2=0\end{cases}}\Rightarrow x=y=2\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
1 tháng 9 2020 lúc 14:39

A = 15 - 8x - x2

= -( x2 + 8x + 16 ) + 31

= -( x + 4 )2 + 31 

-( x + 4 )2 ≤ 0 ∀ x => -( x + 4 )2 + 31 ≤ 31

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxA = 31 <=> x = -4

B = 4x - x2 + 2

= -( x2 - 4x + 4 ) + 6

= -( x - 2 )2 + 6

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 6 ≤ 6

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxB = 6 <=> x = 2

C = -x2 - y2 + 4x + 4y + 2 ( -x2 mới ra :v )

= -( x2 - 4x + 4 ) - ( y2 - 4y + 4 ) + 10

= -( x - 2 )2 - ( y - 2 )2 + 10

\(\hept{\begin{cases}-\left(x-2\right)^2\le0\forall x\\-\left(y-2\right)^2\le0\forall y\end{cases}}\Rightarrow-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)

=> MaxC = 10 <=> x = y = 2

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
NM
23 tháng 10 2021 lúc 8:15

\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)

Bình luận (0)
NM
Xem chi tiết
NT
22 tháng 11 2023 lúc 21:46

Bài 1:

a: \(A=x^2+2x+4\)

\(=x^2+2x+1+3\)

\(=\left(x+1\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

Vậy: \(A_{min}=3\) khi x=-1

b: \(B=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x-10=0

=>x=10

Vậy: \(B_{min}=1\) khi x=10

c: \(C=x^2-2x+y^2+4y+8\)

\(=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x-1=0 và y+2=0

=>x=1 và y=-2

Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)

Bài 2:

a: \(A=5-8x-x^2\)

\(=-\left(x^2+8x\right)+5\)

\(=-\left(x^2+8x+16-16\right)+5\)

\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)

Dấu '=' xảy ra khi x+4=0

=>x=-4

b: \(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

c: \(C=4x-x^2+3\)

\(=-x^2+4x-4+7\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

d: \(D=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-\left(x-3\right)^2-2< =-2\forall x\)

Dấu '=' xảy ra khi x-3=0

=>x=3

Bình luận (0)