(3x+4y)² = 9x² + 16y² + 24xy
(4x-3y)² = 16x² + 9y² - 24xy
+ + = + +
=> (3x+4y)² + (4x-3y)² = 25(x²+y²) = 25(14x+6y+6)
=> (3x+4y)² + (4x-3y)² = 2(175x + 75y) + 150
=> (3x+4y)² + (4x-3y)² = 2(99x + 132y + 76x - 57y) + 150
=> (3x+4y)² + (4x-3y)² = 2.33.(3x+4y) + 2.19.(4x-3y) + 150
=> (3x+4y)² - 2.33.(3x+4y) + 33² + (4x-3y)² - 2.19.(4x-3y) + 19² = 150 + 33² + 19²
=> (3x+4y-33)² + (4x-3y-19)² = 1600
Có: (3x+4y-33)² ≤ (3x+4y-33)² + (4x-3y-19)² = 1600
=> 3x+4y-33 ≤ 40 => 3x+4y ≤ 73
max (3x+4y) = 73
đạt khi: 3x+4y = 73 và 4x-3y-19 = 0
=> x = 59/5 và y = 47/5