Những câu hỏi liên quan
LP
Xem chi tiết
XO
21 tháng 4 2022 lúc 23:10

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)

Áp dụng BĐT Schwarz : \(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}=4\)

Lại có \(\dfrac{1}{2xy}=\dfrac{2}{4xy}\ge\dfrac{2}{\left(x+y\right)^2}=2\)

Cộng vế với vế được P \(\ge6\) ("=" khi x = y = 1/2)

Vậy Min P = 6 <=> x = y = 1/2 

Bình luận (0)
TH
Xem chi tiết
NM
5 tháng 8 2016 lúc 23:46

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

Bình luận (0)
NM
5 tháng 8 2016 lúc 23:51

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

Bình luận (0)
NM
6 tháng 8 2016 lúc 0:08

\(A=x^2+y^2=\frac{\left(1^2+1^2\right)\left(x^2+y^2\right)}{2}\ge\frac{\left(1.x+1.y\right)^2}{2}=\frac{1}{2}\)A min = 1 khi x =y = 1/2

\(\sqrt{A}=\sqrt{x^2+y^2}\le\sqrt{x^2}+\sqrt{y^2}=x+y=1\)\(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\))

=> A\(\le1\) => Max A = 1 khi x =0;y =1 hoặc x =1 ; y =0

Bình luận (0)
H24
Xem chi tiết
LM
Xem chi tiết
HD
Xem chi tiết
NM
Xem chi tiết
PD
11 tháng 3 2018 lúc 19:39

áp dùng BDT cô si chúa Pain có

\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\Rightarrow xy\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2.\)

mà \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)

\(\Rightarrow\frac{xy}{2}\ge\Rightarrow xy\ge4\)

b)

áp dụng BDT cô si ta có

\(x+y\ge2\sqrt{xy}\)

lấy từ câu A ta có \(xy\ge4\) " câu a"

suy ra

\(x+y\ge2\sqrt{4}=4\)

Bình luận (0)
HT
Xem chi tiết
TH
12 tháng 3 2021 lúc 19:09

\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5}{16}\left(2x+y\right)\ge2\sqrt{\dfrac{3}{16}.3}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\).

Đẳng thức xảy ra khi x = 1; y = 2.

Bình luận (0)
NL
12 tháng 3 2021 lúc 19:11

\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(M=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5\left(2x+y\right)}{16}\ge2\sqrt{\dfrac{9\left(2x+y\right)}{16\left(2x+y\right)}}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{11}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

Bình luận (0)
GD
12 tháng 3 2021 lúc 19:12

Ta có: \(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)

Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)

Dấu '=' xảy ra <=> \(\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)

Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)

Dấu '=' xảy ra <=> 2x=y và xy=2

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)

Dấu '=' xảy ra <=> x=1, y=2

Vậy GTNN của M là 11/4 <=> x=1;y=2

Bình luận (0)
H24
Xem chi tiết
GD
14 tháng 3 2021 lúc 6:56

Ta có:

\(M=\dfrac{2x+y}{xx}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)

Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)

Dấu '=' xảy ra \(\Leftrightarrow\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)

Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)

Dấu '=' xảy ra \(\Leftrightarrow2x=y,xy=2\)

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)

Dấu '=' xảy ra \(\Leftrightarrow x=1,y=2\)

Vậy GTNN của M là \(\dfrac{11}{4}\Leftrightarrow x=1,y=2\)

Bình luận (1)
H24
Xem chi tiết
NL
30 tháng 12 2021 lúc 23:59

\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)

\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)

Bình luận (2)