Những câu hỏi liên quan
PB
Xem chi tiết
CT
30 tháng 11 2017 lúc 3:52

Đáp án A

Do đó mặt phẳng (P) giao với mặt cầu (S) theo một đường tròn.

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 11 2019 lúc 11:03

Đáp án A

 

Do đó mặt phẳng (P) giao với mặt cầu (S) theo một đường tròn và (P) không đi qua tâm I của (S).

 

Vậy đáp án đúng là A.

Bình luận (0)
ND
Xem chi tiết
NL
12 tháng 12 2020 lúc 21:55

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)

\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)

Bình luận (1)
ND
Xem chi tiết
NL
12 tháng 12 2020 lúc 21:56

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)

\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)

Bình luận (2)
HA
Xem chi tiết
DK
Xem chi tiết
H24
5 tháng 6 2016 lúc 20:00

a, ap dung bunhiacopxki 

(1+1+1)A\(\ge\)(x+y+z)2=9

A\(\ge\)

Dau bang xay ra khi x=y=z=1

b, co Bmax ko co Bmin

Bình luận (0)
NH
Xem chi tiết
KR
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 8 2019 lúc 3:17

Đáp án C

Mặt cầu:  x 2   +   y 2   +   z 2  + 2x - 2y – 2z – 7 = 0 có tâm I(-1; 1;1) và

Mặt cầu:  x 2   +   y 2   +   z 2  + 2x + 2y + 4z + 5= 0 có tâm I’( -1; -1; -2) và R’ = 1

Do đó, hai mặt cầu này cắt nhau.

Bình luận (0)
H24
Xem chi tiết
AH
4 tháng 1 2021 lúc 19:10

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24

Bình luận (0)
TB
Xem chi tiết
NL
10 tháng 11 2020 lúc 22:17

Ta has: x2+y2≥2xyx ^ 2 + y ^ 2 \ ge2xyx2+y2≥2 y

⇔2(x2+y2)≥(x+y)2\ Leftrightarrow2 \ left (x ^ 2 + y ^ 2 \ right) \ ge \ left (x + y \ right) ^ 2⇔2( x2+y2)≥( x+)2

⇔x2+y2≥(x+y)22\ Leftrightarrow x ^ 2 + y ^ 2 \ ge \ frac {\ left (x + y \ right) ^ 2} {2}⇔x2+y2≥2( x )2Các bác sĩ cho biết thêm:

Áp dụng vào bài toán có:

P≤x+y(x+y)22+y+z(y+z)22+z+x(z+x)22P \ le \ frac {x + y} {\ frac {\ left (x + y \ right) ^ 2} {2}} + \ frac {y + z} {\ frac {\ left (y + z \ right ) ^ 2} {2}} + \ frac {z + x} {\ frac {\ left (z + x \ right) ^ 2} {2}}P≤2( x )2Các bác sĩ cho biết thêm:yCác bác sĩ cho biết thêm:+2( y )2Các bác sĩ cho biết thêm:zCác bác sĩ cho biết thêm:+2( z )2Các bác sĩ cho biết thêm:xCác bác sĩ cho biết thêm: =2x+y+2y+z+2z+x=12(4x+y+4y+z+4z+x)= \ frac {2} {x + y} + \ frac {2} {y + z} + \ frac {2} {z + x} = \ frac {1} {2} \ left (\ frac {4} {x + y} + \ frac {4} {y + z} + \ frac {4} {z + x} \ right)=y2Các bác sĩ cho biết thêm:+z2Các bác sĩ cho biết thêm:+x2Các bác sĩ cho biết thêm:=21Các bác sĩ cho biết thêm:(y4Các bác sĩ cho biết thêm:+z4Các bác sĩ cho biết thêm:+x4Các bác sĩ cho biết thêm:)

Áp dụng BĐT Svacxo ta có:

4x+y≤1x+1y\ frac {4} {x + y} \ le \ frac {1} {x} + \ frac {1} {y}y4Các bác sĩ cho biết thêm:≤x1Các bác sĩ cho biết thêm:+y1Các bác sĩ cho biết thêm:4y+z≤1y+1z\ frac {4} {y + z} \ le \ frac {1} {y} + \ frac {1} {z}z4Các bác sĩ cho biết thêm:≤y1Các bác sĩ cho biết thêm:+z1Các bác sĩ cho biết thêm:4z+x≤1z+1x\ frac {4} {z + x} \ le \ frac {1} {z} + \ frac {1} {x}x4Các bác sĩ cho biết thêm:≤z1Các bác sĩ cho biết thêm:+x1Các bác sĩ cho biết thêm:

Do đó: P≤12[2.(1x+1y+1z)]=2016P \ le \ frac {1} {2} \ left [2. \ left (\ frac {1} {x} + \ frac {1} {y} + \ frac {1} {z} \ right) \ right ] = 2016P≤21Các bác sĩ cho biết thêm:[ 2 .(x1Các bác sĩ cho biết thêm:+y1Các bác sĩ cho biết thêm:+z1Các bác sĩ cho biết thêm:) ]=2 0 1 6

Dấu "=" ⇔x=y=z=1672\ Leftrightarrow x = y = z = \ frac {1} {672}⇔x=y=z=6 7 21Các bác sĩ cho biết thêm:

P / s: Dấu "=" không chắc lắm :))

Học tốt đêý nhá

Bình luận (0)
 Khách vãng lai đã xóa
H24
10 tháng 11 2020 lúc 22:56

ta có 5x=7y=3z= \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)=> \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

ADTC dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Suy ra: 

\(\frac{x^2}{25}=9\Rightarrow x^2=25.9\Rightarrow x^2=225\Rightarrow x^2=15^2\Rightarrow x=15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=9.49\Rightarrow y^2=441\Rightarrow y^2=21^2\Rightarrow y=21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=9.9\Rightarrow z^2=81\Rightarrow z^2=9^2\Rightarrow z=9\)

Vậy x = 15;y=21;z=9

Bình luận (0)
 Khách vãng lai đã xóa