Chứng minh: Sin6x + Cos6 = 1 - 3.Sin2x.Cos2x
Chứng minh rằng:
a) sin4 α + sin2 α.cos2 α + cos2α = 1
b) (1+tan α).(1+cot α).sin α.cos α=1 + 2.sin α.cos α
c) sin6 α+cos6 α + 3 sin2 α.cos2 α = 1
a: \(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1^2=1\)
Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc x: y = sin 6 x + cos 6 x + 3 . sin 2 x . cos 2 x
Chứng minh rằng f′(x) = 0 ∀x ∈ R , nếu: f ( x ) = 3 ( sin 4 x + cos 4 x ) − 2 ( sin 6 x + cos 6 x )
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
f(x) = 1 ⇒ f′(x) = 0
Chứng minh biểu thức sau đây không phụ thuộc vào x
A = 3(sin4x + cos4x) -2(sin6x+cos6x)
\(A=3\left[\left(sin^2x+cos^2x\right)^2-2\cdot sin^2x\cdot cos^2x\right]-2\left[\left(sin^2x+cos^2x\right)^3-3\cdot sin^2x\cdot cos^2x\left(sin^2x+cos^2x\right)\right]\)
\(=3\left[1-2\cdot sin^2x\cdot cos^2x\right]-2\left[1-3\cdot sin^2x\cdot cos^2x\right]\)
\(=3-6\cdot sin^2x\cdot cos^2x-2+6\cdot sin^2x\cdot cos^2x\)
=1
Cho 0 <x< 90 0 . Chứng minh các đẳng thức sau:
a, sin 4 x + cos 4 x = 1 - 2 sin 2 x cos 2 x
b, sin 6 x + cos 6 x = 1 - 3 sin 2 x cos 2 x
a, Ta có: sin 4 x + cos 4 x = sin 2 x + cos 2 x 2 - 2 sin 2 x . cos 2 x = 1 - 2 sin 2 x . cos 2 x
b, Ta có: sin 6 x + cos 6 x = sin 2 x + cos 2 x 3 - 3 sin 2 x cos 2 x sin 2 x + cos 2 x = 1 - 3 sin 2 x cos 2 x
Giải phương trình đối xứng: (sin2x + cos2x)(1 - sin2x.cos2x) + sin2x.cos2x=1
Chứng minh rằng hàm số y = sin6x + cos6x + 3sin2xcos2x có đạo hàm bằng 0.
Tìm GTLN và GTNN:
1.\(y=\sqrt{5-2cos^2x.sin^2x}\)
2.\(y=1+\dfrac{1}{2}sin2x.cos2x\)
3.\(y=\sqrt{1+sinx}-3\)
4.\(y=\sqrt{2+sin^22x}\)
1.
\(y=\sqrt{5-2\cos ^2x\sin ^2x}=\sqrt{5-\frac{1}{2}(2\cos x\sin x)^2}=\sqrt{5-\frac{1}{2}\sin ^22x}\)
Dễ thấy:
$\sin ^22x\geq 0\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\leq \sqrt{5}$
Vậy $y_{\max}=\sqrt{5}$
$\sin ^22x\leq 1\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\geq \sqrt{5-\frac{1}{2}}=\frac{3\sqrt{2}}{2}$
Vậy $y_{\min}=\frac{3\sqrt{2}}{2}$
2.
$y=1+\frac{1}{2}\sin 2x\cos 2x=1+\frac{1}{4}.2\sin 2x\cos 2x$
$=1+\frac{1}{4}\sin 4x$
Vì $-1\leq \sin 4x\leq 1$
$\Rightarrow \frac{5}{4}\leq 1+\frac{1}{4}\sin 4x\leq \frac{3}{4}$
$\Leftrightarrow \frac{5}{4}\leq y\leq \frac{3}{4}$
Vậy $y_{\max}=\frac{5}{4}; y_{\min}=\frac{3}{4}$
3.
$\sin x\geq -1\Rightarrow \sqrt{1+\sin x}\geq 0$
$\Rightarrow y\geq -3$
Vậy $y_{\min}=-3$
$\sin x\leq 1\Rightarrow \sqrt{1+\sin x}\leq \sqrt{2}$
$\Rightarrow y\leq \sqrt{2}-3$
Vậy $y_{\max}=\sqrt{2}-3$
1) Gia tri nho nhat cua ham so: f(x) = 3 - \(\dfrac{1}{5}\)sin2x.cos2x
A. \(\dfrac{59}{20}\) B. \(\dfrac{14}{5}\) C. 3 D. \(\dfrac{29}{10}\)
2sin²2x + sin6x - 1 = sin2x
sin2x + sin6x + 2sin²x - 1 = 0
Câu a)
Đặt \(2x=a\). PT trở thành:
\(2\sin ^2a+\sin 3a-1=\sin a\)
\(\Leftrightarrow 2\sin ^2a+\sin (a+2a)-1-\sin a=0\)
\(\Leftrightarrow 2\sin ^2a+\sin a\cos 2a+\cos a\sin 2a-1-\sin a=0\)
\(\Leftrightarrow 2\sin ^2a+\sin a\cos 2a+2\cos ^2a\sin a-1-\sin a=0\)
\(\Leftrightarrow (2\sin ^2a-1)+\sin a\cos 2a+\sin a(2\cos ^2a-1)=0\)
\(\Leftrightarrow -\cos 2a+\sin a\cos 2a+\sin a\cos 2a=0\)
\(\Leftrightarrow \cos 2a(-1+2\sin a)=0\)
\(\Rightarrow \left[\begin{matrix} \cos 2a=0(1)\\ \sin a=\frac{1}{2}(2)\end{matrix}\right.\)
Từ (1) \(\Rightarrow 2a=\frac{\pi}{2}+k\pi (k\in\mathbb{Z})\)\(\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
Từ (2) \(\Rightarrow \left[\begin{matrix} a=\frac{\pi}{6}+2k\pi \rightarrow x=\frac{\pi}{12}+k\pi \\ a=\frac{5}{6}\pi+2k\pi \rightarrow x=\frac{5\pi}{12}+k\pi \end{matrix}\right.\)
Bài 2:
\(\sin 2x+\sin 6x+2\sin ^2x-1=0\)
\(\Leftrightarrow \sin 2x+\sin 6x-\cos 2x=0\)
\(\Leftrightarrow \sin 2x+\sin 4x\cos 2x+\cos 4x\sin 2x-\cos 2x=0\)
\(\Leftrightarrow \sin a+\sin 2a\cos a+\cos 2a\sin a-\cos a=0\)
\(\Leftrightarrow \sin a(1+\cos 2a)+\sin 2a\cos a-\cos a=0\)
\(\Leftrightarrow \sin a.2\cos ^2a+\sin 2a\cos a-\cos a=0\)
\(\Leftrightarrow \cos a(2\sin 2a-1)=0\)
\(\Rightarrow \left[\begin{matrix} \cos a=0(1)\\ \sin 2a=\frac{1}{2}(2)\end{matrix}\right.\)
Từ (1)\(\Rightarrow a=\frac{\pi}{2}+k\pi \Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
Từ (2) \(\Rightarrow \left[\begin{matrix} 2a=\frac{\pi}{6}+2k\pi \rightarrow x=\frac{\pi}{24}+\frac{k\pi}{2}\\ 2a=\frac{5\pi}{6}+2k\pi \rightarrow x=\frac{5\pi}{24}+\frac{k\pi}{2}\end{matrix}\right.\)