Tìm tất cả các số n thuộc N để phân số :
n+13 là phân số tối giản
n - 2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm tất cả các số n thuộc N để phân số n+13/ n-2 là phân số tối giản
ta có n+13=n-2+15để n+13 lá p/s tối giẩn thì 15 và n+2 là p/s tối giản.
suy ra n+2 ko chia hết cho 3 và 5
suy ra n khác 3k+1 và 5k+3
Gọi (n+13;n-2) là d
Ta có n+13 chia hết cho d; n-2 chia hết cho d
suy ra [(n+13)-(n-2)] chia hết cho d
suy ra 15 chia hết cho d và d thuộc ước của 15={1;3;5;15}
suy ra để n+13/n-2 là phân số tối giản thì d=1 và n+13 không chia hết cho 3; 5; 15
n-2 không chia hết cho 3;5;15
suy ra n+13 không chia hết cho 15
vì 13 không chia hết cho 15 nên n sẽ chia hết cho 15 thì n+13 không chia hết cho 15
n-2 không chia hết cho 15
vì 2 không chia hết cho 15 nên n sẽ chia hết cho 15 thì n-2 không chia hết cho 15
suy ra n chia hết cho 15 thì n+13/n-2 là phân số tối giản
Gọi d là Ư nguyên tố của n+13 và n-2; Ta có
n+13chia hết cho d
n-2 chia hết cho d
suy ra 15chia hết cho d
Suy ra d= 15
Để n+13/n-2 thì d khác 15
Suy ra n+13 ko chia hết cho 15
Suy ra n khác 15k -13
tìm tất cả các số tự nhiên n để phân số (n+13)/(n-2) là phân số tối giản
\(S=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2010}\)
\(< \frac{2011}{2011}+\frac{2012}{2012}+\frac{2013}{2013}+\left(\frac{2010}{2010}+\frac{2}{2010}\right)\)\(=1+1+1+1+\frac{2}{2010}=4+2010\)\(< 4\)
Vậy S < 4
tìm tất cả các số tự nhiên n để n+13/n-2 là phân số tối giản
tìm tất cả các số tự nhiên n để phân số n+13/n_2 là phân số tối giản
GỌI Đ LÀ ƯC CỦA N+13 VÀ N-2
=>N+13 CHIA HẾT CHO Đ
=>N-2 CHIA HẾT CHO Đ
=>.............................
TÌM HIỂU NHÉ
MUỐN GIẢI HẾT =>K
OK
Tìm tất cả các số tự nhiên n để n+13/n-2 la phân số tối giản
Giả sử d là ước nguyên tố của n+13 và n-2
Ta có \(n+13⋮d\)
\(n-2⋮d\)
=> \(\left(n+13\right)-\left(n-2\right)⋮d\)
=> \(15⋮d\)
=> \(d\in\){3;5}, vì d nguyên tố, ta chỉ cần xét 1 trường hợp là đủ
Để phân số đã cho tối giản thì \(n+13\) không chia hết cho 3
=> n+13\(\ne3k\left(k\in Z\right)\)
=>\(n\ne3k-13\)
Vây với \(n\ne3k-13\left(k\in Z\right)\) thì phân số đã cho tối giản
cach kho hieu qua ban oi con cach khac ko
mình mới lớp 5 nên mình ko hiểu, chỉ mình được không
tìm tất cả các số tự nhiên n để phân số \(\frac{n+13}{n-2}\)là phân số tối giản
Tìm tất cả các số tự nhiên n để \(\frac{\text{n+13}}{\text{n-2}}\) là phân số tối giản
De \(\frac{n+13}{n-2}\)la phan so toi gian thi n + 13 chia het n - 2
Gia su n + 13 chia het n - 2 ta co:
n + 13 \(⋮\)n - 2
=> ( n + 13 - ( n -2 ) \(⋮\)n - 2
=> 15 \(⋮\)n - 2
=> n - 2\(\in\)Ư(15)
=> n - 2\(\in\)( 1 ; 3 ; 5 ; 15 )
Vay n \(\in\)( 3 ; 5 ; 7 ; 17 )
n-2 | -15 | -5 | -3 | -1 | +1 | +3 | +5 | +15 |
n | -13 | -3 | -1 | 1 | 3 | 5 | 7 | 17 |
Vậy \(\frac{n+13}{n-2}\)là phân số tối giản
tìm tất cả các số tự nhiên n để phân số \(\frac{n+13}{n-2}\)là phân số tối giản
Đặt \(A=\frac{n+13}{n-2}\) là phân số tối giản
\(\Rightarrow\)n+13 chia hết cho n-2(n là số tự nhiên)
Ta có:
\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=\frac{n-2}{n-2}+\frac{15}{n-2}=1+\frac{15}{n-2}\)
Do đó n-2\(\in\)Ư(15)
Vậy Ư(15)là[1,3,5,15]
Ta có bảng sau:
n-2 | 1 | 3 | 5 | 15 |
n | 3 | 5 | 7 | 17 |
Vậy n=3;5;7;17
Để \(\frac{n+13}{n-2}\)là phân số tối giản thì n+13 không chia hết cho n-2
n+13=n-2+15
Mà n-2 chia hết cho n-2; vậy 15 không chia hết cho n-2 và ƯCLN(n-2;15)=1
vậy n-2 khác 3k n-2 khác 5k
n khác 3k+2 n khác 5k+2
Vậy n khác 3k+2; 5k +2
tìm tất cả các số nguyên n để (n+15)/(n+2) là phân số tối giản
Lời giải:
Gọi $d=ƯCLN(n+15,n+2)$
$\Rightarrow n+15\vdots d; n+2\vdots d$
$\Rightarrow (n+15)-(n+2)\vdots d$
$\Rightarrow 13\vdots d$
$\Rightarrow d=1$ hoặc $d=13$.
Để ps đã cho tối giản thì $d\neq 13$
$\Leftrightarrow n+2\not\vdots 13$
$\Leftrightarrow n\neq 13k-2$ với $k$ nguyên.