cos2x -2sinxcosx+7sin2x =5
1+2sinxcosx=sinx+cos2x
Lời giải:
PT $\Leftrightarrow 1+2\sin x\cos x=\sin x+1-2\sin ^2x$
$\Leftrightarrow 2\sin x\cos x-\sin x+2\sin ^2x=0$
$\Leftrightarrow \sin x(2\cos x-1+2\sin x)=0$
Nếu $\sin x=0\Rightarrow x=k\pi$ với $k$ nguyên.
Nếu $2\cos x-1+2\sin x=0$
$\Leftrightarrow 2\cos x=1-2\sin x$
$\Rightarrow 4\cos ^2x=1+4\sin ^2x-4\sin x$
$\Rightarrow 4(1-\sin ^2x)=1+4\sin ^2x-4\sin x$
$\Leftrightarrow 8\sin ^2x-4\sin x-3=0$
Đến đây thì đơn giản rồi vì là pt bậc 2 1 ẩn $\sin x$
Hàm số y = 2 sin x cos x + cos 2 x có giá trị lớn nhất là
A. 3
B. 2 2
C. 2
D. 2
Gọi x 0 là nghiệm dương nhỏ nhất của phương trình 3 sin 2 x + 2 sin x cos x - cos 2 x = 0 . Chọn khẳng định đúng?
A. x 0 ∈ π 2 ; π
B. x 0 ∈ 3 π 2 ; 2 π
C. x 0 ∈ 0 ; π 2
D. x 0 ∈ π ; 3 π 2
Phương trình:
3 sin 2 x + 2 sin x cos x - cos 2 x = 0 (*).
cos x = 0 ⇒ sin 2 x = 1 không phải là nghiệm của phương trình (*).
cos x ≠ 0 . Ta có:
Nghiệm nguyên dương nhỏ nhất của phương trình là x 0 ∈ 0 ; π 2
Chọn C.
tìm gtln và gtnn
y= căn 3 cos2x+2sinxcosx-2
y=căn3 cosx-sinx
\(y=\sqrt{3}cos2x+2sinxcosx-2\)
\(=\sqrt{3}cos2x+sin2x-2\)
Ta có: \(\left|\sqrt{3}cos2x+sin2x\right|\le\sqrt{\left(\sqrt{3}\right)^2+1^2}=2\)
Do đó \(-2\le\sqrt{3}cos2x+sin2x\le2\)
\(\Leftrightarrow-4\le\sqrt{3}cos2x+sin2x-2\le2\).
Ta có: \(\left|\sqrt{3}cosx-sinx\right|\le\sqrt{\left(\sqrt{3}\right)^2+\left(-1\right)^2}=2\)
Do đó \(-2\le\sqrt{3}cosx-sinx\le2\)
cmr sin2x=2sinxcosx
2sinxcosx+ 5cos2x -4 = 0
Pt \(\Leftrightarrow5cos^2x+2sinx.cosx-4\left(sin^2x+cos^2x\right)=0\)
\(\Leftrightarrow cos^2x+2sinx.cosx-4sin^2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\left(-1-\sqrt{5}\right)sinx\\cosx=\left(-1+\sqrt{5}\right)sinx\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1-\sqrt{5}\\cotx=-1+\sqrt{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=arc.cot\left(-1-\sqrt{5}\right)+k\pi\\x=arc.cot\left(-1+\sqrt{5}\right)+k\pi\end{matrix}\right.\)(\(k\in Z\))
Vậy...
Trong các khẳng định sau, khẳng định nào là sai?
A. \(\left(sinx+cosx\right)^2=1+2sinxcosx\)
B. \(sin^4x+cos^4x=1-2sin^2xcos^2x\)
C. \(\left(sinx-cosx\right)^2=1-2sinxcosx\)
D. \(sin^6x+cos^6x=1-sin^2xcos^2x\)
giải phương trình :(sin2x-4cos2x)(sin2x-2sinxcosx) = 2 cos4x
(sin2x - 4cos2x)(sin2x - 2sinx.cosx) = 2cos4x
⇔ (5sin2x - 4)(sin2x - sin2x) = 2cos4x
⇔ \(\left(\dfrac{5-5cos2x}{2}-4\right)\left(\dfrac{1-cos2x}{2}-sin2x\right)\)= 2cos4x
⇔ \(\dfrac{5-5cos2x-8}{2}.\dfrac{1-cos2x-2sin2x}{2}\) = 2cos4x
⇔ (5cos2x + 3)(cos2x + 2sin2x - 1) = 8cos4x
⇔ 5cos22x + 5cos2x.sin2x + 3cos2x + 6sin2x - 3 = 8cos4x
⇔ 5.\(\dfrac{1+cos4x}{2}\) + \(\dfrac{5}{2}sin4x\) + 3cos2x + 6sin2x - 3 = 8cos4x
⇔ \(\dfrac{5}{2}cos4x+\dfrac{5}{2}sin4x+3cos2x+6sin2x-\dfrac{1}{2}\) = 8cos4x
⇔ 5cos4x + 5sin4x + 6cos2x + 12sin2x - 1 = 16cos4x
VP = 16cos4x = 16 . \(\dfrac{\left(1+cos2x\right)^2}{4}\) = 4. (1 + cos2x)2
VP = 4 . (1 + 2cos2x + cos22x)
VP = 4 + 8cos2x + 4 . \(\dfrac{1+cos4x}{2}\)
VP = 6 + 8cos2x+ 2cos4x
Vậy 3cos4x + 5sin4x - 2cos2x + 12sin2x - 7 = 0
( 1 + căn 2 ) . ( cosx + sinx ) - 2sinxcosx - 1 - căn2 = 0
Giải phương trình sau: 1 - 2 sinx cosx ( 1 + 2 sinx ) ( 1 - sinx ) = 3
A. x = - π 18 + kπ
B. x = - π 18 + k 2 π 3
C. x = - π 6 + kπ; - π 18 + kπ
D: Đáp án khác