Những câu hỏi liên quan
BN
Xem chi tiết
NQ
19 tháng 10 2023 lúc 20:38

11+13+15+...+99

SSH: (99-11):2+1=45

Tổng: (99+11).45:2=2475

1+2+3+...+1998+1999

SSH: (1999-1):1+1=1999

Tổng: (1999+1).1999:2=1999000

 

Bình luận (0)
SB
Xem chi tiết
KS
15 tháng 7 2018 lúc 9:18

\(\left(1+2+3+...+100\right).\left(1^2+2^2+3^3+...+100^2\right).\left(65.111-13.15.37\right)\)

\(=\left(1+2+3+...+100\right).\left(1^2+2^2+3^3+...+100^2\right).\left(7215-7215\right)\)

\(=\left(1+2+3+...+100\right).\left(1^2+2^2+3^3+...+100^2\right).0\)

\(=0\)

\(1999.1999.1998-1998.1998.1999\)

\(=1999.1998.\left(1999-1998\right)\)

\(=1999.1998.1\)

Tham khảo nhé~

Bình luận (0)
AH
15 tháng 7 2018 lúc 8:51

13453 nhe

Bình luận (0)
SB
15 tháng 7 2018 lúc 8:52

bn oi viet cach lm ra giup mk voi

Bình luận (0)
PN
Xem chi tiết
HV
13 tháng 7 2019 lúc 21:20

a) Có vẻ đề o đúng lắm . Theo mình o phải là 11/11 mà 1/11

Ta có \(\frac{1}{11}>\frac{1}{12}>\frac{1}{13}>...>\frac{1}{19}>\frac{1}{20}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

hay \(S>\frac{1}{2}\)

b)Ta có 1998 x 1999 + 3997=(2000-2) x 1999 +3997 = 2000 x 1999 - 2 x 1999 +3997 = 1999 x 2000 -3998 +3997 =1999 x 2000 -1

< 1999 x 2000 +2 

=> 1999 x 2000 +2 / 1998 x 1999 +3997 > 1 hay M>1

Bình luận (0)
PN
13 tháng 7 2019 lúc 21:24

Thanks you . Mình sẽ kết bạn với cậu nhé

Bình luận (0)
LB
Xem chi tiết
H24
14 tháng 8 2019 lúc 22:01

a. Có: \(\frac{100^{101}+1}{100^{100}+1}>1\Rightarrow\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+\left(1+99\right)}{100^{100}+\left(1+99\right)}\)

\(\Rightarrow B>\frac{100^{101}+100}{100^{100}+100}\\ \Rightarrow B>\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\\ \Rightarrow B>\frac{100^{100}+1}{100^{99}+1}=A\\ \Leftrightarrow A< B\)

Vậy A < B

b. Có: \(\frac{13^{16}+1}{13^{17}+1}< 0\Rightarrow\frac{13^{16}+1}{13^{17}+1}< \frac{13^{16}+\left(1+12\right)}{13^{17}+\left(1+12\right)}\)

\(\Rightarrow B< \frac{13^{16}+13}{13^{17}+13}\\ \Rightarrow B< \frac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}\\ \Rightarrow B< \frac{13^{15}+1}{13^{16}+1}=A\\ \Leftrightarrow A>B\)

Vậy A > B

c. Có: \(\frac{1999^{2000}+1}{1999^{1999}+1}>1\Rightarrow\frac{1999^{2000}+1}{1999^{1999}+1}>\frac{1999^{2000}+\left(1+1998\right)}{1999^{1999}+\left(1+1998\right)}\)

\(\Rightarrow B>\frac{1999^{2000}+1999}{1999^{1999}+1999}\\ \Rightarrow B>\frac{1999\left(1999^{1999}+1\right)}{1999\left(1999^{1998}+1\right)}\\ \Rightarrow B>\frac{1999^{1999}+1}{1999^{1998}+1}=A\\ \Leftrightarrow A< B\)

Vậy A < B

Bình luận (0)
LA
Xem chi tiết
NK
1 tháng 11 2016 lúc 20:24

giờ trả lời còn được tick ko bạn

Bình luận (1)
DN
Xem chi tiết
H24
3 tháng 5 2022 lúc 21:20

a)

Ta có : ( 1 + 2 + 3 + ... + 99)

Số số hạng là:       ( 99 - 1 )  : 1 + 1 = 100

Tổng là:                 ( 99 + 1 ) x 100 : 2 = 5000

=> 5000 x ( 13  - 12 - 1 ) x 15

=> 5000 x 10 x 15

=> 50000 x 15

=> 750000

Ko muốn vt nx :))

Bình luận (0)
CC
Xem chi tiết
VL
Xem chi tiết
DG
Xem chi tiết
TA
14 tháng 3 2020 lúc 8:24

a,

A=1−3−5−7−9−...−97−99a)A=1−3−5−7−9−...−97−99 

=1−(3+5+7+...+99)=1−(3+5+7+...+99)

=1−(99+3).[(99−3):2+1]2=1−(99+3).[(99−3):2+1]2
=1−2499=−2498=1−2499=−2498

b)B=1+3−5−7+9+...+97−99b)B=1+3−5−7+9+...+97−99
=(−8)+(−8)+(−8)+...+(−8)+97−99=(−8)+(−8)+(−8)+...+(−8)+97−99
=(−8).12+(−2)=−98=(−8).12+(−2)=−98

c)C=1−3−5+7+9−11−13+15+...+97−99c)C=1−3−5+7+9−11−13+15+...+97−99
=0+0+0+0+0+...+0−99=0+0+0+0+0+...+0−99
=−99

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
JL
14 tháng 8 2019 lúc 21:37

a) +) Có \(A=\frac{13^{15}+1}{13^{16}+1}\)=> 13A = \(\frac{13\left(13^{15}+1\right)}{13^{16}+1}\)

= \(\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)(1)

+) Có \(B=\frac{13^{16}+1}{13^{17}+1}\)=> 13B =\(\frac{13\left(13^{16}+1\right)}{13^{17}+1}\)

=\(\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)(2)

+) Từ (1) và (2) => \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

<=> 13A>13B <=> A> B

b) +) Có A=\(\frac{1999^{1999}+1}{1999^{1998}+1}\) => \(\frac{A}{1999}=\frac{1999^{1999}+1}{1999^{1999}+1999}=\frac{1999^{1999}+1999-1998}{1999^{1999}+1999}\)

=\(1-\frac{1998}{1999^{1999}+1999}\) (1)

+) Có B =\(\frac{1999^{2000}+1}{1999^{1999}+1}\)

=> \(\frac{B}{1999}=\frac{1999^{2000}+1}{1999^{2000}+1999}=1-\frac{1998}{1999^{2000}+1999}\)(2)

+) Từ (1) và (2) => \(1-\frac{1998}{1999^{1999}+1999}\)< \(1-\frac{1998}{1999^{2000}+1999}\)

<=> \(\frac{A}{1999}< \frac{B}{1999}\) <=> A< B

Bình luận (0)
NT
16 tháng 10 2022 lúc 10:43

c: \(\dfrac{A}{10}=\dfrac{100^{100}+1}{100^{100}+10}=1-\dfrac{9}{100^{100}+10}\)

\(\dfrac{B}{10}=\dfrac{100^{69}+1}{100^{69}+10}=1-\dfrac{9}{100^{69}+10}\)

Ta có:  100^100+10>100^69+10

=>-9/(100^100+10)<-9/(100^69+10)

=>A/10<B/10

=>A<B

Bình luận (0)