Tìm số tự nhiên x thỏa mãn: 7276 < 5..x < 7282
tìm số tự nhiên x thỏa mãn:5^x+3<5^6
để 5^x+3<5^6
thì x+3<6
nên x <3
mà x là số tự nhiên nên
x thuộc {2;1}
Với x=0
5^x=5^0=1=>y^2+y+1=1=>y=0
Với x khác 0, ta thấy 5^x có tận cùng là 5. Vậy nên y^2+y+1 cũng có tận cùng là chữ số 5 hay y^2+y có tận cùng là 4.
y^2+y=y(y+1) là tích của hai số liên tiếp nên không xảy ra trường hợp có chữ số tận cùng là 4.
Vậy x=0, y=0
Tìm các số tự nhiên x, y thỏa mãn: \(5^x-2^y=1\)
Xét trên tập số tự nhiên
- Với \(y=0\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=1\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=2\Rightarrow x=1\)
- Với \(y\ge2\Rightarrow2^y⋮8\)
\(\Rightarrow5^x-1⋮8\)
Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow5^x=5.25^k\equiv5\left(mod8\right)\) \(\Rightarrow5^x-1\equiv4\left(mod8\right)\) ko chia hết cho 8 (ktm)
\(\Rightarrow x\) chẵn \(\Rightarrow x=2k\)
\(\Rightarrow5^x=5^{2k}=25^k\equiv1\left(mod3\right)\)
\(\Rightarrow5^x-1\equiv0\left(mod3\right)\Rightarrow5^x-1⋮3\Rightarrow2^y⋮3\) (vô lý)
Vậy với \(y\ge3\) ko tồn tại x;y thỏa mãn
Có đúng 1 cặp thỏa mãn là \(\left(x;y\right)=\left(1;2\right)\)
Tìm các số tự nhiên x,y thỏa mãn \(5^x-2^y=1\)
\(5^x-2^y=1\left(a\right)\left(x;y\in N\right)\)
Ta thấy với \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\) thì \(\left(a\right)\) thỏa mãn
\(\left(a\right)\Leftrightarrow5^x-1=2^y\)
Với \(y\ge3\left(y\in N\right)\)
\(\Rightarrow5^x-1=2^y⋮8\left(b\right)\)
- Nếu \(x=2k\left(k\in N\right)\) (x là số chẵn)
\(\Rightarrow5^x-1=25^k-1⋮3\left(25^k\equiv1\left(mod3\right)\Rightarrow25^k-1\equiv0\left(mod3\right)\right)\)
\(\Rightarrow\left(b\right)\) không thỏa mãn
- Nếu \(x=2k+1\left(k\in N\right)\) (x là số lẻ)
\(\Rightarrow5^x-1=5.25^k-1\equiv4\left(mod8\right)\left(5.25^k\equiv5\left(mod8\right)\right)\)
Nên với \(y\ge3\) không tồn tại \(\left(x;y\right)\) thỏa mãn \(\left(a\right)\)
Vậy có đúng 1 cặp nghiệm \(\left(x;y\right)=\left(1;2\right)\) thỏa mãn đề bài
Tìm các số tự nhiên x thỏa mãn : \(\dfrac{13}{4}\) > x > \(\dfrac{5}{2}\)
\(\dfrac{13}{4}>x>\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{13}{4}>x>\dfrac{10}{4}\)
\(\Leftrightarrow x\in\left\{\dfrac{11}{4};\dfrac{12}{4}\right\}\)
các bn giúp mình giải 1 số bài tập này nhé :
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho n-2
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho 2n -2
-tìm các số nguyên x thỏa mãn x lớn hơn hoặc bằng -21/7 và x bé hơn hoặc bằng 3
-tìm các số tự nhiên x,y thỏa mãn x-1 chia hết cho y , y-1 chia hết cho x
Tìm các số tự nhiên x,y thỏa mãn: 5^x - 2^y = 1
Tìm các số tự nhiên x và y thỏa mãn
5^x = y^2 + y +1
Lời giải:
Nếu $y\vdots 5$ thì $5^x=y^2+y+1$ chia 5 dư 1
$\Rightarrow x=0$
Khi đó: $y^2+y+1=5^0=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0$. Mà $y$ là stn nên $y=0$
Nếu $y$ chia 5 dư 1. Đặt $y=5k+1$. Khi đó:
$y^2+y+1=(5k+1)^2+5k+1+1=25k^2+15k+3$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý -loại)
Nếu $y$ chia 5 dư 2. Đặt $y=5k+2$, Khi đó:
$y^2+y+1=(5k+2)^2+5k+2+1=25k^2+25k+7$ chia 5 dư 2
$\Rightarrow 5^x$ chia 5 dư 2 (vô lý)
Nếu $y$ chia 5 dư 3. Đặt $y=5k+3$, Khi đó:
$y^2+y+1=(5k+3)^2+5k+3+1=25k^2+35k+13$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý)
Nếu $y$ chia 5 dư 4. Đặt $y=5k+4$, Khi đó:
$y^2+y+1=(5k+4)^2+5k+4+1=25k^2+45k+21$ chia 5 dư 1
$\Rightarrow 5^x$ chia 5 dư 1 $\Rightarrow x=0$
$\Rightarrow y^2+y+1=5^x=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0\Rightarrow y=0$ (do $y$ là stn). Mà $y$ chia 5 dư 4 nên ô lý.
Vậy $(x,y)=(0,0)$
Tìm số tự nhiên x thỏa mãn 5.x−(32021−32019):32017=275.x−(32021−32019):32017=27.
Đáp số: x = .
Tìm các số tự nhiên x khác 0 thỏa mãn: x/15 < 4/15 5/9 >x/9 1<x/8 <11/8
1. \(\dfrac{x}{15}< \dfrac{4}{15}\)
<=> \(x< 4\) (x \(\ne0\))
2. \(\dfrac{5}{9}>\dfrac{x}{9}\)
<=> \(5>x\) (x \(\ne0\))
3. \(1< \dfrac{x}{8}< \dfrac{11}{8}\)
<=> \(\dfrac{8}{8}< \dfrac{x}{8}< \dfrac{11}{8}\)
<=> 8 < x < 11
<=> x \(\in\left\{9;10\right\}\)