tìm các số nguyên dương n sao cho tồn tại các số nguyên dương x,y,z thỏa mãn x^3+y^3+z^3=nx^2y^2z^2
Tìm tất cả các số nguyên dương n sao cho tồn tại các số nguyên dương x,y,z thỏa mãn \(x^3+y^3+z^3=nx^2y^2z^2\)
Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là số nguyên dương : x^3+y^3+z^3=n\(x^2y^2z^2\)
tìm số nguyên dương n sao cho tồn tại x,y,z nguyên dương thỏa mãn x3 +y3 +z3 = nx2y2z2
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
1/ Cho số nguyên dương n thỏa n và 10 là 2 số nguyên tố cùng nhau . CMR (n^4 - 1) chia hết cho 40
2/ Tìm tất cả các số nguyên tố p và các số nguyên dương x, y thỏa {p-1=2x(x+2) {p^2 -1= 2y(y+2)
3/ Tìm tất cả các số nguyên dương n sao cho tồn tại các sô nguyên dương ,y,z thỏa mãn x^3+y^3+z^3=nx^2 y^2 z^2
3)PT x3+y3+z3=nx2y2z2x3+y3+z3=nx2y2z2 (*)
Không mất tỉnh tổng quát . Giả sử x≥y≥zx≥y≥z
Xét x=1x=1 suy ra y=z=1y=z=1 và n=3n=3
Bây giờ ta xét x≥2x≥2
Như vậy thì theo phương trình (∗)(∗) thì
x3+y3+z3≥(xyz)2x3+y3+z3≥(xyz)2 . Chia cả 22 vế cho x3x3 ta được :
y3+z3x3≥(yz)2x−1y3+z3x3≥(yz)2x−1 (2)
Mà y3+z3x3≤2y3+z3x3≤2
Suy ra x≥(yz)23x≥(yz)23
Mà ta lại có x2|(y3+z3)x2|(y3+z3) nên 2y3≥y3+z3≥x22y3≥y3+z3≥x2
Từ đó ta được y4z49≤x2≤2y3y4z49≤x2≤2y3
Suy ra yz4≤18⇔z≤4√18yz4≤18⇔z≤184 từ đó ta có z<2z<2
Suy ra z=1z=1
Thế vào (2) ta có : y2x−1≤y3+1x3≤1+1x3y2x−1≤y3+1x3≤1+1x3
Suy ra y2≤2x+1x2≤2x+14y2≤2x+1x2≤2x+14
Suy ra 2x≥y2−14>y22x≥y2−14>y2 suy ra x≥y22x≥y22 (3)
Mà y3+z3≥x2y3+z3≥x2 suy ra y3+1≥x2y3+1≥x2
Lại từ (3) ta có x2≥y44x2≥y44
Từ đó suy ra y3+1≥x2≥y44y3+1≥x2≥y44
(2x)32≥y3(2x)32≥y3
Ta có bất phương trình (2x)32+1≥x3(2x)32+1≥x3
Suy ra x≤2x≤2
Đến đây ta sử dụng bất phương trình x≥y22x≥y22 rồi tìm ra nn
C).(0,5 diem) 5 các số nguyên dương x, y, z thỏa tìm tất cả các số nguyên dương thỏa manc mãn: (2z - 4x)/3 = (3x - 2y)/4 = (4y - 3z)/2 và 200 < y ^ 2 + z ^ 2 < 450
Tìm tất cả các số nguyên dương x,y,z thỏa mãn phương trình:
\(x^6+y^6+15y^4+z^3+75y^2=3x^2y^2z+15x^2z-125\)
\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)
\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)
Ta có:
\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)
Đẳng thức xảy ra khi và chỉ khi:
\(x^2=y^2+5=z\)
Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)
\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)
Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:
\(\left(x;y;z\right)=\left(3;2;9\right)\)
tìm tất cả các số nguyên n sao cho tồn tại các số nguyên dương x,y,z thỏa \(x^3+y^3+z^3=nx^2y^2z^2\)
Lời giải:
Từ \(x^3+y^3+z^3=nx^2y^2z^2\Rightarrow n=\frac{x}{y^2z^2}+\frac{y}{x^2z^2}+\frac{z}{x^2y^2}\)
Gọi \(x=\max (x,y,z)\)
Ta thấy \(x^2|x^3+y^3+z^3\rightarrow x^2|y^3+z^3\rightarrow y^3+z^3\geq x^2\)
TH1: \(x>y^2z^2\)
\(\Rightarrow y^3+z^3>y^4z^4\Leftrightarrow y^3(1-\frac{yz^4}{2})+z^3(1-\frac{y^4z}{2})>0 \)
Nếu \(yz\geq 2\) thì điều trên hoàn toàn vô lý. Suy ra \(yz\leq 1\rightarrow y=z=1\)
\(\Rightarrow x^3+2=nx^2\rightarrow x^2|2\rightarrow x=1\), ta thu được \(n=3\)
TH2: \(x< y^2z^2\)
Khi đó \(n=\frac{x}{y^2z^2}+\frac{y}{x^2z^2}+\frac{z}{x^2y^2}\leq \frac{3x}{y^2z^2}<3\)
\(\Rightarrow n=1,2\)
Ta sẽ thử xem hai giá trị này có thỏa mãn không.
Với \(n=1\) \(\Rightarrow x^3+y^3+z^3=x^2y^2z^2\)
Cho \(z=1\Rightarrow x=3,y=2\) (biến đổi PT tích) thỏa mãn nên $n=1$ cũng thỏa mãn.
Với \(n=2\) \(\Rightarrow 2=\frac{x}{y^2z^2}+\frac{y}{x^2z^2}+\frac{z}{x^2y^2}<1+\frac{y}{x^2z^2}+\frac{z}{x^2y^2}\)
\(\Rightarrow y^3+z^3\geq x^2y^2z^2\geq y^3z^3\) do $x$ max
\(\Rightarrow (y^3-1)(z^3-1)\leq 1\) nên \((y^3-1)(z^3-1)=0,1\)
Dễ thấy \((y^3-1)(z^3-1)=1\) không thỏa mãn nên \((y^3-1)(z^3-1)=0\). nên tồn tại một số bằng $1$, giả sử là $y=1$
Bên trên vừa chỉ ra được \(y^3+z^3\geq x^2y^2z^2\Rightarrow z^3+1\geq x^2z^2\geq z^4\)
\(\Rightarrow 1\geq z^3(z-1)\rightarrow z=1\)
Thay vào PT ban đầu ta không thu được nghiệm $x$ thỏa mãn
Vậy \(n\in\left\{1,3\right\}\)
P/s: Bài này là 1 bài trong China TST 1987, nó là toán olympiad nên để trong box toán 9 không hợp lý
Trên mạng tất nhiên đã có lời giải cho bài toán này, nói chung là ý tưởng cũng xêm xêm nhau.
Đây là bài làm của mình từ năm lớp 10, ý tưởng hoàn toàn độc lập, coi như mình cũng chỉ "viết lại" thôi.
Từ điều kiện dễ dàng suy ra \(x^3+y^3\ge z^2\)
Không mất tính tổng quát giả sử \(x\le y\le z\)
Ta có: \(z=nx^2y^2-\frac{x^3+y^3}{z^2}\ge nx^2y^2-(x+y)\)
Do \(x^3+y^3=(x+y)(x^2-xy+y^2)\leq (x+y)y^2\)
\(\Rightarrow n^2x^4y^4<2nx^2y^2(x+y)+x^3+y^3\)
Và \(nxy<2(\frac{1}{x}+\frac{1}{y})+\frac{1}{nx^3}+\frac{1}{ny^3} (*)\)
Từ \((*) \Rightarrow x=1\) vì nếu \(x\geq 2\) thì \(y\ge x\ge 2\) vế trái của \((*)\) lớn hơn \(4\) còn vế phải \(\le 3\) (Vô lí)
Vậy \(x=1\) ta có \(ny<2+\frac{2}{y}+\frac{1}{n}+\frac{1}{ny^3} \Rightarrow y\leq3\)
\(x^3+y^3=1+y^3\geq z^2\)
Ta xét \(\left\{{}\begin{matrix}y=1\Rightarrow z=1;n=3\\y=2\Rightarrow z=3;n=1\\y=3\Rightarrow\varnothing\end{matrix}\right.\)
Vậy pt có nghiệm \((x,y,z,n)=(1,1,1,3);(1,2,3,1)\)
\(CMR:\)Tồn tại các số nguyên \(a,b,c\)thỏa mãn 0< I a+b\(\sqrt{2}\)+c\(\sqrt{3}\)I < 1/1000
I I là trị tuyệt đối. Thông cảm ko biết tìm cái trị tuyệt đối ở đâu
Tìm \(n\in\)N* sao cho tồn tại các số nguyên dương \(x,y,z\) thỏa mãn \(x^3+y^3+z^3=nx^2y^2z^2\)
Tìm \(p\in P\) và \(x,y\in\)N* sao cho \(\hept{\begin{cases}p-1=2x\left(x+2\right)\\p^2-1=2y\left(y+2\right)\end{cases}}\)