Tìm tất cả các số nguyên dương n sao cho tồn tại các số nguyên dương x,y,z thỏa mãn \(x^3+y^3+z^3=nx^2y^2z^2\)
Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là số nguyên dương : x^3+y^3+z^3=n\(x^2y^2z^2\)
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
1/ Cho số nguyên dương n thỏa n và 10 là 2 số nguyên tố cùng nhau . CMR (n^4 - 1) chia hết cho 40
2/ Tìm tất cả các số nguyên tố p và các số nguyên dương x, y thỏa {p-1=2x(x+2) {p^2 -1= 2y(y+2)
3/ Tìm tất cả các số nguyên dương n sao cho tồn tại các sô nguyên dương ,y,z thỏa mãn x^3+y^3+z^3=nx^2 y^2 z^2
Tìm tất cả các số nguyên dương x,y,z thỏa mãn phương trình:
\(x^6+y^6+15y^4+z^3+75y^2=3x^2y^2z+15x^2z-125\)
\(CMR:\)Tồn tại các số nguyên \(a,b,c\)thỏa mãn 0< I a+b\(\sqrt{2}\)+c\(\sqrt{3}\)I < 1/1000
I I là trị tuyệt đối. Thông cảm ko biết tìm cái trị tuyệt đối ở đâu
Tìm \(n\in\)N* sao cho tồn tại các số nguyên dương \(x,y,z\) thỏa mãn \(x^3+y^3+z^3=nx^2y^2z^2\)
Tìm \(p\in P\) và \(x,y\in\)N* sao cho \(\hept{\begin{cases}p-1=2x\left(x+2\right)\\p^2-1=2y\left(y+2\right)\end{cases}}\)
1, tìm các số nguyên dương x,y,z thỏa mãn 8x+9y+10z=100 và x+y+z>11
2,tìm x là số nguyên lớn nhất thỏa mãn x< ( √5 +2)^8
3, tìm các số tự nhiên x,y,z thỏa mãn đồng thời (x-1) ³ +y ³ -2z ³ =0 và x+y+x=1
đg cần gấp lắm , help me!!
1 Tìm tất cả các số nguyên tố p và q sao cho tồn tại STN m thỏa mãn: p.q / p+q =m2+1/m+1
2 Cho các số nguyên dương x;y;z thỏa mãn X2 +Y2=Z2
a/CM: X*Y chia hết cho 12
b/CM: X3Y-XY3 chia hết cho7
3 CMR với k là số ngyên thì 2016k+3 ko là lập phương 1 số nguyên
Tìm tất cả các số nguyên dương x, y, z thỏa mãn \(3^x+2^y=1+2^z\)