Những câu hỏi liên quan
H24
Xem chi tiết
TP
30 tháng 7 2018 lúc 11:02

còn cần không bạn, mk làm cho

Bình luận (0)
SK
Xem chi tiết
LN
26 tháng 4 2017 lúc 16:18

A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=1\(-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=\(\dfrac{47}{60}\)

B=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)=

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}+\dfrac{1}{101}\)

=\(1-\dfrac{1}{101}\)

=\(\dfrac{100}{101}\)

Bình luận (0)
HN
25 tháng 4 2017 lúc 23:52

A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=\(1-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

= \(\dfrac{47}{60}\)

B= \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

= \(2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

= 2\(\left(1-\dfrac{1}{101}\right)\)

= \(\dfrac{200}{101}\)

Bình luận (1)
H24
Xem chi tiết
VH
28 tháng 3 2018 lúc 21:14

s = 1-1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5

S=1 + (-1/2 +1/2)+...+(-1/4 + 1/4 ) +-1/5

S = 1 + 0 +0 +...+ 0 +-1/5

S= 1 + -1/5

S = 4/5

Bình luận (0)
H24
28 tháng 3 2018 lúc 21:15

S=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5

S=1-1/5

S=4/5.

P=1/1.3+1/3.5+1/5.7+1/7.9

2P=2/1.3+2/3.5+2/5.7+2/7.9

2P=1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9

2P=1-1/9=8/9

P=8/9:2

P=4/9.

Chac chan dung nha ban.k cho minh nhe

Bình luận (0)
TN
28 tháng 3 2018 lúc 21:16

S=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5 =1/1-1/5 nhé  P=1/2+(2/1.3+2/3.5+2/5.7+2/7.9)=1/2+(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9).=1/2+(1/1-1/9)

Bình luận (0)
TL
Xem chi tiết
LP
24 tháng 6 2015 lúc 10:59

a) 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/2003.2004 = 1/1 - 1/2 +1/2 - 1/3 +...+ 1/2003 -1/2004 = 1 - 1/2004

b) Đặt B = 1/1.3 + 1/3.5 + 1/5.7 +...+ 1/2003.2005 => 2B = 2(1/1.3 + 1/3.5 + 1/5.7 +...+ 1/2003.2005) => 2B = 2/3.5 + 2/5.7 + 2/7.9 +...+ 2/2003.2005 => 2B = 1/3 - 1/5 + 1/5 - 1/7 +1/7 - 1/9 +...+ 1/2003 - 1/2005 => 2B = 1/3 - 1/2005 = 2012/6015 => B = 2012/6015 : 2 = 1001/6015

( Cái này là để bạn hiểu thêm cách mình làm ở trên : C/m : a/k.(k+a) = a/k - a/k+a

Ta có : a/k.(k+a) = (k+a) - k/k.(k+a) = k+a/k.(k+a) - k/k.(k+a) = a/k - a/k+a)

Bấm đúng cho mình nhe

Bình luận (0)
DH
21 tháng 2 2018 lúc 19:11

sai rồi

Bình luận (0)
NT
12 tháng 4 2020 lúc 19:48

mày bảo người ta làm sai thế mày làm đi . ooooooooooookkkkkkkkkkkk

chứ

Bình luận (0)
 Khách vãng lai đã xóa
PP
Xem chi tiết
LL
23 tháng 8 2021 lúc 19:10

a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2003.2004}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}=1-\dfrac{1}{2004}=\dfrac{2003}{2004}\)b)Đặt  \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2003.2005}\)

\(\Rightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2003.2005}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2003}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)\(\Rightarrow A=\dfrac{1002}{2005}\)

Bình luận (0)
NT
23 tháng 8 2021 lúc 21:39

a: Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\)

\(=\dfrac{2003}{2004}\)

Bình luận (0)
NT
23 tháng 8 2021 lúc 22:37

b: Ta có: \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2003\cdot2005}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2003\cdot2005}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2004}{2005}=\dfrac{1002}{2005}\)

Bình luận (0)
NH
Xem chi tiết
HL
29 tháng 3 2018 lúc 20:33

S=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)

\(S=\dfrac{1}{1}-\dfrac{1}{5}\\ S=\dfrac{4}{5}\)

\(P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}\\ 2.P=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)

\(2.P=\dfrac{1}{1}-\dfrac{1}{9}\\ 2.P=\dfrac{8}{9}\\ P=\dfrac{8}{9}:2\\ P=\dfrac{8}{18}=\dfrac{4}{9}\)

Bình luận (0)
LA
Xem chi tiết
KT
29 tháng 7 2018 lúc 15:33

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{!}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{1024}+\frac{1}{2048}\)

\(\Rightarrow\)\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}+\frac{1}{1024}\)

\(\Rightarrow\)\(2C-C=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)

\(\Leftrightarrow\)\(C=1-\frac{1}{2048}=\frac{2047}{2048}\)

Bình luận (0)
LA
29 tháng 7 2018 lúc 15:45

Câu A bạn quên 1/4.5 kìa , với câu D đâu >>>
 

Bình luận (0)
H24
26 tháng 10 2024 lúc 20:08

Lam mô a Di Đà Phật 

 

Bình luận (0)
PM
Xem chi tiết
NH
17 tháng 9 2017 lúc 9:33

Cách làm :

Áp dụng công thức : \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\)

\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{999.1000}\)

\(\Leftrightarrow C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=1-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{999}{1000}\)

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+.........+\dfrac{1}{99.101}\)

\(\Leftrightarrow2F=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{99.101}\)

\(\Leftrightarrow2F=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{99}-\dfrac{1}{101}\)

\(\Leftrightarrow2F=1-\dfrac{1}{101}\)

\(\Leftrightarrow2F=\dfrac{100}{101}\)

\(\Leftrightarrow F=\dfrac{50}{101}\)

Bình luận (0)
H24
17 tháng 9 2017 lúc 9:34

Giải:

\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)

\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{999}{1000}\)

Sửa đề:

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{999.1001}\)

\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{999}-\dfrac{1}{1001}\right)\)

\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{1001}\right)\)

\(\Leftrightarrow F=\dfrac{1}{2}.\dfrac{1000}{1001}\)

\(\Leftrightarrow F=\dfrac{500}{1001}\)

Chúc bạn học tốt!

Bình luận (0)
NN
17 tháng 9 2017 lúc 9:39

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)

=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)(Áp dụng t.c\(\dfrac{1}{a\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\))

=\(\dfrac{1}{1}-\dfrac{1}{1000}=\dfrac{999}{1000}\)

Vậy...

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{997.999}\)

=>\(2F=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{997.999}\)

=>\(2F=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{997}-\dfrac{1}{999}\)(áp dụng tính chất \(\dfrac{2}{a\left(a+2\right)}=\dfrac{1}{a}-\dfrac{1}{a+2}\))

=>\(2F=\dfrac{1}{1}-\dfrac{1}{999}=\dfrac{998}{999}\)

=>\(F=\dfrac{499}{999}\)

Vậy...

Bình luận (0)
H24
Xem chi tiết
KN
27 tháng 4 2019 lúc 10:20

1.

a. \(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)

\(=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=5.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=5.\left(1-\frac{1}{100}\right)\)

\(=5.\frac{99}{100}\)

\(=\frac{99}{20}\)

Bình luận (0)
KN
27 tháng 4 2019 lúc 10:23

b. \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)

\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{4}{2}.\left(1-\frac{1}{101}\right)\)

\(=2.\frac{100}{101}\)

\(=\frac{200}{101}\)

Bình luận (0)
KN
27 tháng 4 2019 lúc 10:24

Đặt \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)

\(\Rightarrow\frac{1}{2}A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(\Rightarrow\frac{1}{2}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow\frac{1}{2}A=1-\frac{1}{101}\)

\(\Rightarrow\frac{1}{2}A=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}.2\)

\(\Rightarrow A=\frac{200}{101}.\)

Bình luận (0)