CMR : 3^6n - 2^6n chia hết cho 35 ( n thuộc N )
CMR : 3^6n - 2^6n chia hết cho 35 ( n thuộc N )
Ta có:3^6.n2^6.n=n.(3^6-2^6)=n.665
Vì 3^6.n-2^6.n chia hết cho 35 và 665 chia hết cho 35 nên n chia hết cho 35
Vậy n chia hết cho 35 ------->đpcm
CMR 36n - 26n chia hết cho 35
CMR
a) (5n + 7) x (4n + 6) chia hết cho 2 với mọi n thuộc N
b) (8n + 1) x (6n + 5) chia hết cho 2 với mọi n thuộc N
Chứng minh 5n+3 - 35n+1 + 26n+3 chia hết cho 69 V n thuộc N
Bạn xem lại đề nha.
Với n=0 thì điều phải chứng minh là sai
CMR nếu với mọi n thuộc N
a) (5n+7)(4n+6) chia hết cho 2
b) (8n+1)(6n+5) ko chia hết 2
c) n.(n+1)(2n+1) chia hết cho 6
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
tìm n thuộc N đó
a, 6n +5 chia hết cho 2n -1
b, 6n +3 chia hết cho 4n + 1
c, 3n +2 chia hết cho 9-4n
Ta có : 6n + 5 chia hết cho 2n - 1
<=> 6n - 3 + 8 chia hết cho 2n - 1
<=> 3(2n - 1) + 8 chia hết cho 2n - 1
<=> 8 chia hết cho 2n - 1
<=> 2n - 1 thuôc Ư(8) = ......
=> 2n = .......
=> n = ......
Ta có : 6n + 3 chia hết cho 4n + 1
<=> 2(6n + 3) chia hết cho 4n + 1
<=> 12n + 6 chia hết cho 4n + 1
<=> 12n + 3 + 3 chia hết cho 4n + 1
<=> 3(4n + 1) + 3 chia hết cho 4n + 1
<=> 3 chia hết cho 4n + 1
<=> 4n + 1 thuộc Ư(3)
tự giải tiếp
tìm n thuộc N đó
a, 6n +5 chia hết cho 2n -1
b, 6n +3 chia hết cho 4n + 1
c, 3n +2 chia hết cho 9-4n
1,Cho 4 số a,b,c,d thỏa mãn a+b+c+d = 0.
CMR: a^3+b^3+c^3=3(b+d)(ac-bd)
2, CMR:
a, n^4+6n^3+11n^2+6n chia hết cho 24 với mọi n thuộc Z
b,( m+1)(m+3)(m+5)(m+7)+15 chia hết cho m+6 với mọi m thuộc Z
Các bác giúp em với thứ 7 em phải nộp rồi
Chứng minh rằng n4+6n3+11n2+6n chia hết cho 24 với mọi n thuộc N.
Ta có:
n4+6n3+11n2+6n = n4+2n3+4n3+8n2+3n2+6n = (n4+2n3)+(4n3+8n2)+(3n2+6n) = n3(n+2)+4n2(n+2)+3n(n+2)
= (n+2)(n3+4n2+3n) = (n+2)n(n2+3n) = n(n+1)(n+2)(n+3)
Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n4+2n3+4n3+8n2+3n2+6n chia hết cho 24.