\(\sqrt{\dfrac{12x+5}{2}}=2\\ \sqrt{\left(x-3\right)^2}=3\)
Tính giá trị biểu thức:
a) \(P=\left(x^3+12x-9\right)^{2005}\), biết \(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\);
b) \(Q=x^3+ax+b\), biết \(x=\sqrt[3]{-\dfrac{b}{2}+\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}+\sqrt[3]{-\dfrac{b}{2}-\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}\)
a) Để tính giá trị của biểu thức P=(x^3+12x−9)^{2005}=(√3+12√−9)^{2005} với x=3√4(√5+1)−3√4(√5−1). Đầu tiên, ta thay x bằng giá trị đã cho vào biểu thức P: P=(3√4(√5+1)−3√4(√5−1))^3+12(3√4(√5+1)−3√4(√5−1))−9)^{2005} Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: P=(4(5+1)^{1/2}−4(5−1)^{1/2})^3+12(4(5+1)^{1/2}−4(5−1)^{1/2})−9)^{2005} =(4√6−4√4)^3+12(4√6−4√4)−9)^{2005} =(4√6−8)^3+12(4√6−8)−9)^{2005} =(64√6−192+96√6−96−9)^{2005} =(160√6−297)^{2005} ≈ 1.332 × 10^3975
b) Để tính giá trị của biểu thức Q=x^3+ax+b=√3+√a+√b^2+√a^3+√3+√a−√b^2+√a^3 với x=3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27). Tương tự như trên, ta thay x bằng giá trị đã cho vào biểu thức Q: Q=(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))^3+a(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))+b Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: Q=(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))^3+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b ≈ −b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b
Tìm ĐKXĐ:
a) \(\dfrac{3}{\sqrt{12x-1}}\)
b) \(\sqrt{\left(3x+2\right)\left(x-1\right)}\)
c) \(\sqrt{3x-2}\) .\(\sqrt{x-1}\)
d) \(\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\)
\(a,\dfrac{3}{\sqrt{12x-1}}\) xác định \(\Leftrightarrow12x-1>0\Leftrightarrow12x>1\Leftrightarrow x>\dfrac{1}{12}\)
\(b,\sqrt{\left(3x+2\right)\left(x-1\right)}\) xác định \(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}3x+2\ge0\\x-1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}3x+2\le0\\x-1\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\)
\(c,\sqrt{3x-2}.\sqrt{x-1}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)
\(d,\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\) xác định \(\Leftrightarrow-x+5>0\Leftrightarrow x< 5\)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
\(\sqrt{\dfrac{\left(x^2-3\right)^2+12x^2}{x^2}+\sqrt{\left(x+2\right)^2-8x}}\) Rút gọn
giải hpt:
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+x+1=3y\\y^2+y+1=3x\end{matrix}\right.\)
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
ĐK: \(x>\dfrac{1}{4};y>-\dfrac{1}{4}\), đặt \(a=\dfrac{1}{\sqrt{12x-3}};b=\dfrac{1}{\sqrt{4y+1}}\)với a,b>0
khi đó, ta có hệ phương mới \(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}80a+40b=8\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45a=3\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35.\dfrac{1}{15}+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\b=\dfrac{1}{15}\end{matrix}\right.\)
thay \(\dfrac{1}{\sqrt{12x-3}}=a\) hay \(\dfrac{1}{\sqrt{12x-3}}=\dfrac{1}{15}\Rightarrow\sqrt{12x-3}=15\Leftrightarrow12x-3=225\Leftrightarrow12x=228\Leftrightarrow x=19\left(TMĐK\right)\) thay \(\dfrac{1}{\sqrt{4y+1}}=b\) hay
\(\dfrac{1}{\sqrt{4y+1}}=\dfrac{1}{15}\Rightarrow\sqrt{4y+1}=15\Leftrightarrow4y+1=225\Leftrightarrow4y=224\Leftrightarrow y=56\left(TMĐK\right)\)
Vậy (x;y)=(9;56) là nghiệm duy nhất của hệ phương trình đã cho.
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
ĐK: x,y#0, khi đó \(\dfrac{1}{x}+\dfrac{1}{y}=4\Rightarrow x+y=4xy\)
Do đó \(x\left(1+4y\right)+y=2\Leftrightarrow x+4xy+y=2\Leftrightarrow x+x+y+y=2\Leftrightarrow2\left(x+y\right)=2\Leftrightarrow x+y=1\)
Mà \(4xy=x+y\Leftrightarrow4xy=1\Leftrightarrow xy=\dfrac{1}{4}\)
Vậy \(x+y=1;xy=\dfrac{1}{4}\)
Do đó x,y là nghiệm của phương trình:
\(t^2-t+\dfrac{1}{4}=0\)
\(\Delta=b^2-4ac=1-4.1.\dfrac{1}{4}=0\)
Phương trình có nghiêm kép \(x_1=x_2=-\dfrac{b}{2a}=-\dfrac{-1}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=y=\dfrac{1}{2}\left(nhận\right)\)
Vậy (x;y)=\(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) là nghiệm duy nhất của hệ phương trình đã cho.
c)\(\left\{{}\begin{matrix}x^2+x+1=3y\\y^2+y+1=3x\end{matrix}\right.\)
Trừ vế đối vế hai phương trình, ta được:
\(x^2+x+1-y^2-y-1=3y-3x\\ \Leftrightarrow x^2-y^2+4x+4y=0\\ \Leftrightarrow\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x+y+4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x+y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=-x-4\end{matrix}\right.\)
+Với x=y thế vào \(x^2+x+1=3y\) ta được
\(x^2+x+1=3x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Do đó (x;y)=(1;1) là một nghiệm của hệ phương trình đã cho.
+Với y=-x-4 thế vào \(x^2+x+1=3y\) ta được
\(x^2+x+1=3\left(-x-4\right)\Leftrightarrow x^2+4x+13=0\Leftrightarrow\left(x+2\right)^2+9=0\)(*)
Mặt khác \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+9\ge0\Rightarrow\left(x+2\right)^2\ge-9>0\), do đó phương trình (*) vô nghiệm
Vậy (x;y)=(1;1) là nghiệm duy nhất của hệ phương trình đã cho.
Rút gọn biểu thức \(\dfrac{\sqrt{3x^2-12x+12}-x+2}{x-2}\) khi x>2 được kết quả là:
A. \(1-\sqrt{3}\)
B. \(\sqrt{3}.\left(x-2\right)\)
C. \(\sqrt{3}-1\)
D. \(-\sqrt{3}.\left(x-2\right)\)
`(\sqrt(3x^2-12x+12)-x+2)/(x-2)`
`=(\sqrt(3(x^2-4x+4))-(x-2))/(x-2)`
`=(\sqrt(3(x-2)^2)) -(x-2))/(x-2)`
`=(\sqrt3. (x-2) - (x-2))/(x-2)`
`=( (\sqrt3-1) (x-2))/(x-2)`
`=\sqrt3-1`
`=>` C.
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)
Rút gọn biểu thức A = \(\sqrt{\dfrac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
đk: x khác 0
A = \(\sqrt{\dfrac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
= \(\sqrt{\dfrac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
= \(\sqrt{\dfrac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
= \(\dfrac{x^2+3}{\left|x\right|}+\left|x-2\right|\)
TH1: x \(\ge2\)
A = \(\dfrac{x^2+3}{x}+x-2\)
= \(\dfrac{x^2+3+x^2-2x}{x}=\dfrac{2x^2-2x+3}{x}\)
TH2: \(0< x< 2\)
A = \(\dfrac{x^2+3}{x}-x+2\)
= \(\dfrac{x^2+3-x^2+2x}{x}=\dfrac{2x+3}{x}\)
TH3: x < 0
A = \(\dfrac{x^2+3}{-x}-x+2\)
= \(\dfrac{-x^2-3}{x}-x+2=\dfrac{-x^2-3-x^2+2x}{x}=\dfrac{-2x^2+2x-3}{x}\)
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9.\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{4x^2+12x+9}=5\)
\(\sqrt{5x-6}-3=0\)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{9\left(x-2\right)^2}=18\)
=>\(\sqrt{9}\cdot\sqrt{\left(x-2\right)^2}=18\)
=>\(3\cdot\left|x-2\right|=18\)
=>\(\left|x-2\right|=6\)
=>\(\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: x>=2
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
=>\(3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
=>\(4\sqrt{x-2}=40\)
=>\(\sqrt{x-2}=10\)
=>x-2=100
=>x=102(nhận)
d: ĐKXĐ: \(x\in R\)
\(\sqrt{4\left(x-3\right)^2}=8\)
=>\(\sqrt{\left(2x-6\right)^2}=8\)
=>|2x-6|=8
=>\(\left[{}\begin{matrix}2x-6=8\\2x-6=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=14\\2x=-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
e: ĐKXĐ: \(x\in R\)
\(\sqrt{4x^2+12x+9}=5\)
=>\(\sqrt{\left(2x\right)^2+2\cdot2x\cdot3+3^2}=5\)
=>\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
f: ĐKXĐ:x>=6/5
\(\sqrt{5x-6}-3=0\)
=>\(\sqrt{5x-6}=3\)
=>\(5x-6=3^2=9\)
=>5x=6+9=15
=>x=15/5=3(nhận)
Giải PT:
a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}.\)
b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4.\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0.\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6.\)
a)
ĐKXĐ: \(x> \frac{-5}{7}\)
Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)
\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)
Vậy......
b) ĐKXĐ: \(x\geq 5\)
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)
(hoàn toàn thỏa mãn)
Vậy..........
c) ĐK: \(x\in \mathbb{R}\)
Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)
\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
Khi đó:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)
\(\Leftrightarrow 7-a^2+6a=0\)
\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\) vì \(a\geq 0\)
\(\Rightarrow 6x^2-12x+7=a^2=49\)
\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)
(đều thỏa mãn)
Vậy..........
d)
ĐKXĐ: \(x^2+5x+2\ge 0\)
\((x+1)(x+4)-3\sqrt{x^2+5x+2}=6\)
\(\Leftrightarrow (x^2+5x+4)-3\sqrt{x^2+5x+2}=6\)
Đặt \(\sqrt{x^2+5x+2}=a(a\geq 0)\Rightarrow x^2+5x+2=a^2\)
PT trở thành:
\(a^2+2-3a=6\)
\(\Leftrightarrow a^2-3a-4=0\Leftrightarrow (a-4)(a+1)=0\)
\(\Rightarrow a=4\) vì \(a\geq 0\)
\(\Rightarrow x^2+5x+2=a^2=16\)
\(\Rightarrow x^2+5x-14=0\Leftrightarrow (x-2)(x+7)=0\)
\(\Rightarrow \left[\begin{matrix} x=2\\ x=-7\end{matrix}\right.\) (đều thỏa mãn)
Vậy................