Chứng minh rằng 2^4n chia hết cho 15
chứng minh rằng 2^4n -1 chia hết cho 15 với mọi n thuộc N
Ta có:
\(2^{4n}-1\)
\(=\left(2^4-1\right)\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...+1\right)\)
\(=15\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...+1\right)\)
Mà \(n\in N\)
\(\Rightarrow15\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...1\right)⋮15\)
\(\Rightarrow2^{4n}-1⋮15\forall n\in N\)
Ta có:
\(16\equiv1\left(mod15\right)\)
\(\Leftrightarrow2^4\equiv1\left(mod15\right)\)
\(\Leftrightarrow2^{4n}\equiv1\left(mod15\right)\)
\(\Leftrightarrow2^{4n}-1\equiv0\left(mod15\right)\)
\(\Leftrightarrow2^{4n}-1⋮15\)
Bài 1 :
Chứng minh rằng : a . ( 5n + 7 ) . ( 4n + 6 ) chia hết cho 2 , b . ( 8n + 1 ) . ( 4n + 5 ) không chia hết cho 2 , với n là số tự nhiên .
Bài 2 :
Chứng minh rằng : abab chia hết cho 101 .
Bài 3 :
Chứng minh rằng : ( n + 10 ) . ( n + 15 ) chia hết cho 2 với n là số tự nhiên .
Bài 4 :
Chứng minh rằng với mọi số tự nhiên n thì 30n + 12 chia hết cho 6 nhưng không chia hết cho 8 .
Chứng minh rằng: 24n - 1 chia hết cho 15 với n ϵ N
24n - 1 = (24)n - 1 chia hết cho 24 - 1 = 15
a)Tìm số nguyên n sao cho:4n+2 chia hết cho 2n+6
b)Chứng minh rằng:215 +165 chia hết cho 3 và 11
a, 4n+2 chc 2n+6
=>4n+12-10 chc 2n+6
=>2(2n+6)-10 chc 2n+6
=>10 chc 2n+6
2n+6 thuộc ước của 10
Xét 2n chẵn, 6 chẵn =>chọn đc n=-2; -4; 5; -16
215+165=215+220=215(1+25)=215*33
Vì 33 chc 11 và chc 3
Nên 215+165 chc 3 và 11
a) Cho n thuộc N. chứng minh rằng A=(n+10).(n+15) chia hết cho 2
b) Tìm số tự nhiên n sao cho 4n - 5 chia hết cho 2n - 1
mình biết câu a
a=[n+10].[n+15]chia hết cho 2
khi n là số chẵn thì n +10 sẽ chia hết cho 2
khi n là số lẻ thì 15+n sẽ chia hết cho 2
nên a chia hết cho 2
a)nếu n=2k(kEN)
thì (n+10)(n+15)=(2k+10)(2k+15)=2k(2k+15)+10(2k+15)=4k^2+30k+20k+150=4k^2+50k+150 chia hết cho 2
nếu n=2k+1(kEN)
thì (n+10)(n+15)=(2k+1+10)(2k+1+15)=(2k+11)(2k+16)=2k(2k+16)+11(2k+16)=4k^2+32k+22k+176=4k^2+54k+176 chia hết cho 2
Vậy với mọi nEN thì A=(n+10)(n+15) chia hết cho 2
b)(4n-5) chia hết cho 2n-1
4n-2-3 chia hết cho 2n-1
2(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1 hay 2n-1 E Ư(3)={1;3}
=>2nE{2;4}
=>n E{1;2}
Vậy để 4n-5 chia hết cho 2n-1 thì nE{1;2}
1. Cho A = \(2^{2016}-1\) . Chứng minh rằng A chia hết cho 105.
2.Chứng minh rằng \(5^{2017}+7^{2015}\) chia hết cho 12.
3. Chứng minh rằng B = \(3^{2^{2n}}+10\) chia hết cho 13.
4. Chứng minh rằng C = \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) luôn chia hết cho 22.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Chứng minh rằng :
a.2^4n+1+3 chia hết cho 5
b.2^4n+2+1 chia hết cho 5
a) Vì 24k+1 = 24k.2 = ....6k .2
Mà ...6k có tận cùng là 6 nên 24k+1 có tận cùng là 2
=> ....2 + 3 có tận cùng là 5 nên chia hết cho 5
b) Vì 24k+2 = 24k.22 = ...6k.22
Mà ...6k có tận cùng là 6 và 22 có tận cùng là 4 nên 24k+2 có tận cùng là 4
=> ...4 + 1 có tận cùng là 5 nên chia hết cho 5
Bài 1. Chứng minh rằng: \(10^{28}\) + 8 chia hết cho 72
Bài 2. Chứng minh rằng: \(n^4-4n^3-4n^2+16n⋮384\)
Cứu với bài khó quá
1.
\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)
Mặt khác:
\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)
\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)
2.
Đề đúng chưa.
Thay n=7 vào thì biểu thức bằng 945 không chia hết cho 384.
1.
1028+8=(103)25+8=825.12525+8⋮81028+8=(103)25+8=825.12525+8⋮8
Mặt khác:
1028+8=1028−1+9=(10−1).A+9=9A+9⋮91028+8=1028−1+9=(10−1).A+9=9A+9⋮9
Mà (8;9)=1⇒1028+8⋮72
chứng minh 2^4n-1 chia hết cho 15
Ta có: \(2^{4n}-1=\left(2^4\right)^n-1⋮2^4-1\Rightarrow2^{4n}-1⋮15\)
\(2^{4n}-1=\left(2^4\right)^n-1^n=\left(2^4-1\right)\left[\left(2^4\right)^{n-1}+...+1\right]=15M\) .Vậy \(2^{4n}-1⋮15\)