Những câu hỏi liên quan
CB
Xem chi tiết
H24
15 tháng 1 2017 lúc 22:07

bạn ơi thế thì phải có 1991 số 2003 nha

Bình luận (0)
TD
15 tháng 1 2017 lúc 22:11

\(gcd\left(1991;10^k\right)=1\) với mọi \(k\).

Giả sử ko có số nào dạng \(2003...2003\) mà chia hết cho \(1991\).

Xét \(1992\) số \(2003,20032003,...,20032003...2003\) (số cuối cùng có \(1992\) lần lặp \(2003\)).

Theo nguyên lí Dirichlet thì tồn tại 2 số cùng số dư khi chia cho \(1991\).

Gọi chúng là  \(2003...2003\) có \(m\) và \(n\) lần lặp số \(2003\).

Ta trừ chúng cho nhau, ở đây cho \(m>n\) thì hiệu là con số này:

\(2003...2003000...000\) (trong đó có \(m-n\) số \(2003\)và \(n\) số \(0\))

Số này chia hết cho \(1991\).

Mà \(gcd\left(1991;10^n\right)=1\) nên \(2003...2003\) (với \(m-n\) số \(2003\)) chia hết cho \(1991\) (vô lí)

Vậy điều giả sử là sai, suy ra đpcm.

Bình luận (0)
CB
15 tháng 1 2017 lúc 22:17

Thank you anh nha! Nhưng mà em học cấp 2, đọc hổng hiểu!?

Bình luận (0)
DA
Xem chi tiết
DD
25 tháng 3 2015 lúc 22:32

đề hình như thiếu có bao nhiêu số 2003

Bình luận (0)
H24
15 tháng 1 2017 lúc 22:04

bạn ơi muốn thế thì phải có 1991 số 2003 nha

Bình luận (0)
H24
Xem chi tiết
SS
26 tháng 11 2015 lúc 21:26

xét dãy số sau:

2003;20032003;..;20032003(có n số 2003; n >2004)

nhậnxét: các số trong dãy đều là các số lẻ nên không chia hết cho 2004

=> số bất kì trong dãy chia cho 2004 có thể dư 1;2;3;...;2003 dảy trên có nhiều hơn 2003 số nên theo nguyên lì dirichle => có ít nhất 2 số chia cho 2004 có cùng mợt số dư

=> số có dạng 20032003...2003...2003(có 2003+m số 2003) và số 2003..2033(có m số 2003) có cùng số dư

=> hiệu của chúng chia hết cho 2004

hay số 2003200300..00(có 2003 số 2003) chia hết chi 2004

NHỚ TICK**

Bình luận (0)
VL
Xem chi tiết
OO
24 tháng 12 2015 lúc 21:04

 Michiel Girl Mít ướt chia hết cho 2013 mà

Bình luận (0)
HG
24 tháng 12 2015 lúc 21:14

200320032003.............2003=2003*1000100010001...........10001

Mà 2003 không chia hết cho 2013 và 100010001............10001 cũng không chia hết cho 2013 nên số 200320032003........2003 không chia hết cho 2013

tick nha Liên dễ thương

Bình luận (0)
BT
Xem chi tiết
NL
Xem chi tiết
NH
24 tháng 3 2017 lúc 13:46

Xét dãy gồm \(100\) số hạng :

\(2003\); \(20032003;\) .............. ; \(20032003............2003\)

Lấy \(100\) số hạng của dãy chia cho \(99\) ta được \(100\) số dư nhận các giá trị là :

\(0;\) \(1;\) \(2;...............;\)\(98\) (\(99\) giá trị)

\(\Rightarrow\) Có ít nhất 2 số dư bằng nhau

\(\Rightarrow\) Ở dãy trên có ít nhất 2 số đồng dư với nhau khi chia cho 99

\(\Rightarrow\) Hiệu 2 số đó có dạng :

\(20032003............200300.........000\) \(⋮\) \(99\)

\(20032003......2003\) . \(10^k\) \(⋮\) \(99\)

\(\Rightarrow\) \(20032003...........2003\) \(⋮\) \(99\) (do \(10^k\)\(2013\) nguyên tố cùng nhau)

Vậy tồn tại một số có dạng \(20032003.................2003\) chia hết cho 99

\(\Rightarrowđpcm\)

Chúc bn học tốt!!!

Bình luận (0)
NH
23 tháng 3 2017 lúc 11:07

Đề bài có chuẩn ko zậy bn!!

Bình luận (0)
KG
Xem chi tiết
MT
Xem chi tiết
BP
Xem chi tiết