Những câu hỏi liên quan
NH
Xem chi tiết
H24
6 tháng 2 2019 lúc 10:59

Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)

\(\Leftrightarrow yx^2+yx+y=x^2+2\)

\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)

*Xét y = 1 thì pt trở thành \(x-1=0\)

                                   \(\Leftrightarrow x=1\)

*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x

Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)

         \(=y^2-4\left(y^2-3y+2\right)\)

          \(=y^2-4y^2+12y-8\)

         \(=-3y^2+12y-8\)

Pt (1) có nghiệm khi \(\Delta\ge0\)

                         \(\Leftrightarrow-3y^2+12y-8\ge0\)

                         \(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)

Bình luận (0)
H24
6 tháng 2 2019 lúc 12:22

bạn icu... làm đúng rồi

Bình luận (0)
H24
6 tháng 2 2019 lúc 12:22

mình làm giống bạn ấy

Bình luận (0)
SB
Xem chi tiết
HP
8 tháng 12 2021 lúc 22:55

Áp dụng BĐT \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\):

\(y^2=\left(\sqrt{sinx}+\sqrt{1-sinx}\right)^2\le sinx+1-sinx=1\)

\(\Rightarrow-1\le y\le1\)

\(\Rightarrow M^4-m^4=0\)

Bình luận (0)
PK
Xem chi tiết
PG
Xem chi tiết
PN
8 tháng 10 2017 lúc 16:23

ta có

can x+1 >=0 voi moi x

can 6-x >=0 voi moi x

=> căn x+1 + căn 6-x >= 0

Bình luận (0)
QB
8 tháng 10 2017 lúc 16:33

Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\ge\)7                                        => Q\(\ge\)\(\sqrt{7}\)

dấu bằng khi x=-1 hoặc x=6

Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\le\)7+x+1+6-x = 14             => Q\(\le\) \(\sqrt{14}\)

dấu bằng khi x+1 = 6-x    <=> 2x =5     <=> x=2.5

Bình luận (0)
NT
Xem chi tiết
NT
15 tháng 10 2021 lúc 22:13

a: Ta có: \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{x+2}{x\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+1-x-2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{-1}{x-\sqrt{x}+1}\)

Bình luận (0)
LC
Xem chi tiết
GL
21 tháng 4 2019 lúc 8:29

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

Bình luận (0)
PY
Xem chi tiết
NN
Xem chi tiết
TL
24 tháng 10 2017 lúc 17:16

\(A=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\\ \text{Do }\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ A=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu \("="\) xảy ra khi :

\(\left|x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow x-\dfrac{1}{2}=0\\ \Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(A_{\left(Min\right)}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

\(B=2-\left|x+\dfrac{5}{6}\right|\\ \text{Do }\left|x+\dfrac{5}{6}\right|\ge0\forall x\\ \Rightarrow B=2-\left|x+\dfrac{5}{6}\right|\le2\forall x\)

Dấu \("="\) xảy ra khi :

\(\left|x+\dfrac{5}{6}\right|=0\\ \Leftrightarrow x+\dfrac{5}{6}=0\\ \Leftrightarrow x=-\dfrac{5}{6}\)

Vậy \(B_{\left(Max\right)}=2\) khi \(x=-\dfrac{5}{6}\)

Bình luận (0)
MN
Xem chi tiết
TA
15 tháng 5 2016 lúc 10:54

ta có |x+3|>=0;|2y-14|>=0

=>|x+3|+|2y-14|>=0

=>S>=2016

dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0

=>x+3=0 và 2y-14=0

x=-3 và y=7

Vậy GTNN của S=2016 khi x=-3 và y=7

Bình luận (0)
LP
Xem chi tiết
BD
6 tháng 3 2017 lúc 16:26

hình như là -0,25 nhé câu trả lời mình chuyển sau, sắp thi rồibanhquaeoeo

Bình luận (7)