CMR : NẾU P LÀ SỐ NGUYÊN TỐ LỚN HƠN 3 THÌ (P - 1)(P + 1) CHIA HẾT CHO 24
Câu 1 : Cho p là số nguyên tố lớn hơn 3 . CMR (p-1)(p+1) chia hết cho 24
Câu 2 CMR nếu p và p+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng luôn chia hết cho ...
Câu 3 : Cho p là số nguyên tố lớn hơn 3 . Hỏi p2 + 2009 là hợp số hay số nguyên tố .
CMR nếu m là 1 số nguyên tố lớn hơn 3 thì (m-1)(m+1) chia hết cho 24. ^^
Ta có: \(\left(m-1\right)m\left(m+1\right)⋮3\)mà (m,3)=1 nên
\(\left(m-1\right)\left(m+1\right)⋮3\)(1)
m là số nguyên tố lớn hơn 3 nên m là số lẻ , m-1, m+1 là 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8(2)
Từ 1,2 => (m-1)(m+1) chia hết cho 2 số nguyên tố cùng nhau 3 và 8
Vậy (m-1)(m+1) chia hết cho 24
CMR : Nếu P là số nguyên tố lớn hơn 3 thì (p - 1)(p+1) chia hết 24
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) => (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) => (p - 1)(p + 1) chia hết cho 24. (đpcm)
a) Cho a là số nguyên tố lớn hơn 6. CMR: \(a^2-1\)chia hết cho 24
b) CMR: nếu a và b là các số nguyên tố lớn hơn 3 thì \(a^2-b^2\)chia hết cho 24
c) Tìm điều kiện của số tự nhiên a để \(a^4-1\)chia hết cho 240
CMR p là số nguyên tố lớn hơn 3 thì [p-1].[p+1] chia hết cho 24
Câu 1: CMR: Nếu 3 số n, n+k, n+2k là 3 số nguyên tố lớn hơn 3 thì k chia hết cho 6.
Câu 2: Cho p và 8p+1 là 2 số nguyên tố (p>3). CMR: 4p+1 chia hết cho 3.
câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3
=>16p(8p+1)(4p+1) chia het cho 3
mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3
CMR:
Nếu p là số nguyên tố lớn hon 3 thì (p-1).(p+1) chia hết cho 24
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p – 1)(p + 1) chia hết cho 24
Ta có p - 1 p p + 1 ⋮ 3 mà (p, 3) = 1 nên
p - 1 p + 1 ⋮ 3 (1)
p là số nguyên tố lớn hơn 3 nên p là số lẽ, p – 1 và p + 1 là hai số chẳn liên tiếp , có một số là bội của 4 nên tích của chúng chia hết cho 8 (2)
Từ (1) và (2) suy ra (p – 1)(p + 1) chia hết cho 2 nguyên tố cùng nhau là 3 và 8
Vậy (p – 1)(p + 1) chia hết cho 24.
chứng minh nếu P là số nguyên tố lớn hơn 3 thì ( P + 1 )( P - 1 ) chia hết cho 24
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
Ta có (p-1).(p+1)
p là số nguyên tố lớn hơn 3⇒⇒→ƯCLN(N;3)=1
mà p.(p-1).(p+1) chia hết cho 3
→(p-1).(p+1) chia hết cho 3 (1)
Mặt khác p là 1 số lẻ→p=2.k+1 (k thuộc Z)
→ (p-1).(p+1)=(2k+1-1).(2k+1+1)
=2k.(2k+2)
=2k.2.(k+1)
=4.k.(k+1) chia hết cho 8
→ (p-1).(p+1) chia hết cho 8 (2)
Từ (1) và (2) → (p-1).(p+1) chia hết cho 24