Những câu hỏi liên quan
PB
Xem chi tiết
CT
25 tháng 7 2018 lúc 3:06

Bình luận (0)
H24
Xem chi tiết
TT
11 tháng 5 2021 lúc 16:08

undefined

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 12 2017 lúc 15:58

Giải sách bài tập Toán 12 | Giải sbt Toán 12 trên khoảng (− ∞ ;+ ∞ );

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có min f(x) = −1/4; max f(x) = 1/4

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 1 2019 lúc 10:39

Chọn B.

Ta có:  cho y' = 0

Ta có: 

Suy ra 

Vậy M + m = -9

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 10 2018 lúc 11:13

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 1 2018 lúc 14:03

Đáp án A

Dựa vào đồ thị hàm số y = f ' x , ta có nhận xét:

 Hàm số   y = f ' x đổi dấu từ    sang + khi qua x = x 1 .

Hàm số   y = f ' x đổi dấu từ + sang – khi qua  x = x 2   .

 Hàm số y = f ' x  đổi dấu từ  – sang + khi qua x = x 3 .

Từ đó ta có bảng biến thiên của hàm số y = f x  trên đoạn 0 ; x 4  như sau:

Sử dụng bảng biến thiên ta tìm được max 0 ; x 4 [ f x = max f 0 , f x 2 , f x 4 min 0 ; x 4 f x = min f x 1 , f x 3 .

Quan sát đồ thị, dùng phương pháp tích phân để tính diện tích, ta có:

∫ x 1 x 2 f ' x d x < ∫ x 2 x 3 0 − f ' x d x ⇒ f x 3 < f x 1 ⇒ min 0 ; x 4 f x = f x 3

 

Tương tự, ta có

∫ 0 x 1 0 − f ' x d x > ∫ x 1 x 2 f ' x d x ⇒ f 0 > f x 2 ∫ x 2 x 3 0 − f ' x d x > ∫ x 3 x 4 f ' x d x ⇒ f x 2 > f x 4

⇒ f 0 > f x 2 > f x 4 ⇒ max 0 ; x 4 f x = f x 3

Vậy  max 0 ; x 4 f x = f 0 ;     min 0 ; x 4 f x = f x 3

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 5 2019 lúc 11:46

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 2 2018 lúc 11:22

Bình luận (0)
TN
Xem chi tiết
NL
22 tháng 12 2020 lúc 9:43

\(x^2+y^2=1+xy\Rightarrow x^2+y^2-xy=1\)

Ta có: \(1+xy=x^2+y^2\ge2xy\Rightarrow xy\le1\)

\(1+xy=x^2+y^2\ge-2xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(P=\left(x^2+y^2\right)^2-x^2y^2-2x^2y^2=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)-2x^2y^2\)

\(=x^2+y^2+xy-2x^2y^2=-2x^2y^2+2xy+1\)

Đặt \(a=xy\Rightarrow P=f\left(a\right)=-2a^2+2a+1\)

Xét hàm \(f\left(a\right)=-2a^2+2a+1\) trên \(\left[-\dfrac{1}{3};1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[-\dfrac{1}{3};1\right]\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow M=\dfrac{3}{2}\) ; \(m=\dfrac{1}{9}\) \(\Rightarrow Mm=\dfrac{1}{6}\)

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 10 2017 lúc 13:19

Bình luận (0)