Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PD
Xem chi tiết
BK
17 tháng 8 2018 lúc 21:52

a ) \(a\left(a-1\right)-\left(a+3\right)\left(a+2\right)\)

\(=a^2-a-a^2-3a-2a-6\)

\(=-6a-6\)

\(=6\left(-a-1\right)⋮6\left(đpcm\right)\)

b ) \(a\left(a+2\right)-\left(a-7\right)\left(a-5\right)\)

\(=a^2+2a-\left(a^2-7a-5a+35\right)\)

\(=a^2+2a-a^2+7a+5a-35\)

\(=14a-35\)

\(=7\left(2a-5\right)⋮7\left(đpcm\right)\)

c ) \(a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow ab+a+ab+b=ab+b+a+1\)

\(\Leftrightarrow ab=1\left(đpcm\right)\)

Bình luận (0)
PD
17 tháng 8 2018 lúc 21:17

Các bn giúp mk vs!

Bình luận (0)
NL
17 tháng 8 2018 lúc 21:24

a^2(a+1)+2a(a+1)

=(a+1)(a^2+2a)

=a(a+1)(a+2)

đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.

Bình luận (0)
TL
Xem chi tiết
ML
8 tháng 8 2015 lúc 13:25

Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)

Với a, b > 0, ta có: 

\(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\)

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.

Phân phối số hạng hợp lí để áp dụng Côsi

\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge6\)

Dấu "=" xảy ra khi a = b = 1/2.

\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)

\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)

\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)

Bình luận (0)
SM
Xem chi tiết
TA
24 tháng 7 2015 lúc 15:47

Super Man mà lại còn phải lên đây để hỏi bài à?

Bình luận (0)
SM
Xem chi tiết
HA
28 tháng 7 2016 lúc 15:24

Super man hỏi bài? Nghịch lý

Bình luận (0)
KQ
18 tháng 12 2020 lúc 15:57

ok

 

Bình luận (0)
SM
Xem chi tiết
H24
Xem chi tiết
H24
22 tháng 6 2019 lúc 18:30

#)Bạn tham khảo nhé :

Câu hỏi của Ngô Mạnh Kiên - Toán lớp 6 - Học toán với OnlineMath

P/s : vô thống kê hỏi đáp của mk có thể ấn vô link đc nhé

Bình luận (0)
CN
22 tháng 6 2019 lúc 18:35

Có : \(\hept{\begin{cases}a+1⋮b\\b⋮b\end{cases}\Rightarrow a+1+b⋮b}\)

                                => a + ( 1 + b) \(⋮\)b

Mà 1 + b \(⋮\)a và a \(⋮\)a => \(\hept{\begin{cases}b⋮a\\a⋮b\end{cases}}\Rightarrow a=b\)

=> a + 1 = b + 1

Có : a + 1 \(⋮\)b        => b + 1\(⋮\)b

                                 => 1 \(⋮\)b => b = 1 ( không t/m)

                                                   => a = 1 ( không t/m)

Vậy không có a,b t/m đề

Bình luận (0)
DT
Xem chi tiết
HP
1 tháng 8 2016 lúc 16:08

\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)

\(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)

\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)

\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)

\(=2014.\frac{1}{2014}-3=1-3=-2\)

Vậy.....................

Bình luận (0)
TT
Xem chi tiết
NT
14 tháng 7 2016 lúc 14:11

Hình như đề bài sai ý bạn ak

Bình luận (0)
MA
Xem chi tiết
LH
26 tháng 7 2021 lúc 16:06

Câu 6:C

Câu 8:C

Câu 9:Tìm phần bù của B trong A có nghĩa là tìm A\B

Ý D

Bình luận (0)
NT
26 tháng 7 2021 lúc 23:05

Câu 6: C

Câu 8: C

Câu 9: D

Bình luận (0)
TP
Xem chi tiết