Cho tập hợp B = { x ∈ R /(x^2 - 9).(x^2 -3x)= 0} Tập hợp B được viết dưới dạng liệt kê là
Cho A={x€R/2x-2≥0} B={x€R/9-3x≥0} a) biểu diễn A,B thành khoảng,đoạn ,nửa khoảng b)Tìm A giao B ,A hợp B , A\B,B\A c) Liệt kê các tập hợp con của tập hợp
a: A=[1;+∞)
B=(-∞;3]
b: A giao B=[1;3]
A hợp B=R
A\B=(3;+∞)
B\A=(-∞;1)
Cho tập hợp A = {x ∈ N|x≤5}. Tập hợp A được viết dưới dạng liệt kê các phần tử là:
Viết các tập hợp sau đây dưới dạng liệt kê các phần tử:
a) \(A = \{ x \in \mathbb{Z}|\;|x|\; < 5\} \)
b) \(B = \{ x \in \mathbb{R}|\;2{x^2} - x - 1 = 0\} \)
c) \(C = \{ x \in \mathbb{N}\;|x\) có hai chữ số\(\} \)
a) A là tập hợp các số nguyên có giá trị tuyệt đối nhỏ hơn 5.
\(A = \{ - 4; - 3; - 2; - 1;0;1;2;3;4\} \)
b) B là tập hợp các nghiệm thực của phương trình \(2{x^2} - x - 1 = 0.\)
\(B = \{ 1; - \frac{1}{2}\} \)
c) C là tập hợp các số tự nhiên có hai chữ số.
\(C = \{ 10;11;12;13;...;99\} \)
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử
a) A= {x ∈ R | (2x – x2)( 3x – 2) = 0}
b, B = { x∈ Z | 2x3-3x2-5x = 0 }
c , C= { x ∈ Z | 2x2 -75x -77 = 0 }
d , D = { x ∈ R | (x2 - x - 2 ) (x2 - 9 ) = 0 } .
`#3107.101107`
a,
\(\text{A = }\left\{x\in R\text{ | }\left(2x-x^2\right)\left(3x-2\right)=0\right\}\)
`<=> (2x - x^2)(3x - 2) = 0`
`<=>`\(\left[{}\begin{matrix}2x-x^2=0\\3x-2=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x\left(2-x\right)=0\\3x=2\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2-x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy, `A = {0; 2; 2/3}`
b,
\(\text{B = }\left\{x\in R\text{ | }2x^3-3x^2-5x=0\right\}\)
`<=> 2x^3 - 3x^2 - 5x = 0`
`<=> x(2x^2 - 3x - 5) = 0`
`<=>`\(\left[{}\begin{matrix}x=0\\2x^2-3x-5=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2x^2-2x+5x-5=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\\left(2x^2-2x\right)+\left(5x-5\right)=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2x\left(x-1\right)+5\left(x-1\right)=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2x+5=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\\x=1\end{matrix}\right.\)
Vậy, `B = {-5/2; 0; 1}.`
c,
\(\text{C = }\left\{x\in Z\text{ | }2x^2-75x-77=0\right\}\)
`<=> 2x^2 - 75x - 77 = 0`
`<=> 2x^2 - 2x + 77x - 77 = 0`
`<=> (2x^2 - 2x) + (77x - 77) = 0`
`<=> 2x(x - 1) + 77(x - 1) = 0`
`<=> (2x + 77)(x - 1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+77=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-77\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{77}{2}\\x=1\end{matrix}\right.\)
Vậy, `C = {-77/2; 1}`
d,
\(\text{D = }\left\{x\in R\text{ | }\left(x^2-x-2\right)\left(x^2-9\right)=0\right\}\)
`<=> (x^2 - x - 2)(x^2 - 9) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-x-2=0\\x^2-9=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2+x-2x-2=0\\x^2=9\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}\left(x^2+x\right)-\left(2x+2\right)=0\\x^2=\left(\pm3\right)^2\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x\left(x+1\right)-2\left(x+1\right)=0\\x=\pm3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\x=\pm3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x-2=0\\x+1=0\\x=\pm3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=-1\\x=\pm3\end{matrix}\right.\)
Vậy, `D = {-1; -3; 2; 3}.`
cho tập hợp X={x thuộc R|5<x,9} nghĩa là gì? viết đầy đủ dưới dạng liệt kê các phần tử
R là tập hợp số thực .
Mà số thực gồm 2 loại là số hữu tỉ và vô tỉ .
Số thập phân vô hạn không tuần hoàn là số vô tỉ
Số thập phân hữu hạn hoặc số thập phân vô hạn tuần hoàn .
Vậy x bắt buộc phải là số thập phân .
Hỏi thật nhá x,9 với x là số thập phân . Vậy cái số này là số gì vậy ???
Cho tập hợp A = { x ∈ N | 7 < x ≤ 11 } . Tập hợp A viết dưới dạng liệt kê các phần tử là: *
A. { 7; 8; 9; 10 ;11 }.
B. { 8; 9; 10; 11 }.
C. { 7; 8; 9; 10 }.
D. { 8; 9; 10 }.
Cho tập hợp D = { x ∈ R / x+ \(\sqrt{2x+1}\) = 2 (x−3)\(^2\)}. Viết tập hợp D dưới dạng liệt kê phần tử
Giải phương tình: \(x+\sqrt{2x-1}=2\left(x-3\right)^2\)
Điều kiện: \(x\ge\dfrac{1}{2}\)
\(PT\Leftrightarrow\sqrt{2x-1}-3=2x^2-13x+15\\ \Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}-3}=\left(x-5\right)\left(2x-3\right)\\ \Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}-2x+3\right)=0\\ \Leftrightarrow\begin{matrix}x=5\\\dfrac{2}{\sqrt{2x-1}+3}=2x-3\left(1\right)\end{matrix}\)
\(\left(1\right)\Leftrightarrow\left(2x-3\right)\left(\sqrt{2x-1}+3\right)=2\)
Đặt \(t=\sqrt{2x-1},t>0\) phương trình trở thành \(\left(t^2-2\right)\left(t+3\right)=2\\ \)
\(\Leftrightarrow\left[{}\begin{matrix}t=-2\left(L\right)\\t=\dfrac{-1-\sqrt{17}}{2}\\t=\dfrac{-1+\sqrt{17}}{2}\end{matrix}\right.\left(L\right)\)
Với \(t=\dfrac{-1+\sqrt{17}}{2}\) ta có \(\sqrt{2x-1}=\dfrac{-1+\sqrt{17}}{2}\)
\(\Leftrightarrow2x-1=\dfrac{9-\sqrt{17}}{2}\)
\(\Leftrightarrow x=\dfrac{11-\sqrt{17}}{4}\)
Vậy \(E=\left\{5;\dfrac{11-\sqrt{17}}{4}\right\}\)
Cho tập hợp A= {x ∈ N|2< x < 7}
a) Viết tập hợp A dưới dạng liệt kê.
b) Viết tất cả tập hợp con của tập hợp A có chứa 2 phần tử.
a) A= (3;4;5;6)
b) (3;4); (4;5); (5;6); (3;6); (3;5); (4;6)
Nhớ k cho mình đó!
a) A = { 3;4;5;6}
b) { 3;4} ; { 3;5} ; {3;6} ; { 4;5} ; { 4;6} ; {5;6}
cho tập hợp A ={x thuộc N |2<x<7}
a)viết tập hợp A dưới dạng liệt kê
b) viết tất cả tập hợp con của A có 2 phần tử
a) A = { 3 ; 4 ; 5 ; 6 }
b) các tập hợp có hai phần tử của tập hợp A là :
{ 3 ; 4 } ; { 3 ; 5 } ; { 3 ; 6 }
{ 4 ; 5 } ; { 4 ; 6 } ; { 5 ; 6 }
a) A = { 3;4;5;6}
b) A = { 3;4 }
A = {3;5}
A = {3;6}
A = {4;5}
A = {4,6}
A = {5;6}
cho hai tập hợp:
A={x\(\in\)R|\(x^2\)+x-6=0 hoặc 3\(x^2\)-10x+8=0};
B={x\(\in\)R|\(x^2\)-2x-2=0 và 2\(x^2\)-7x+6=0}.
a) viết tập hợp A,B bằng cách liệt kê các phần tử của nó.
b) tìm tất cả các tập hợp sao cho \(B\subset X\) và \(X\subset A\).
a: A={x\(\in R\)|x^2+x-6=0 hoặc 3x^2-10x+8=0}
=>x^2+x-6=0 hoặc 3x^2-10x+8=0
=>(x+3)(x-2)=0 hoặc (x-2)(3x-4)=0
=>\(x\in\left\{-3;2;\dfrac{4}{3}\right\}\)
=>A={-3;2;4/3}
B={x\(\in\)R|x^2-2x-2=0 hoặc 2x^2-7x+6=0}
=>x^2-2x-2=0 hoặc 2x^2-7x+6=0
=>\(x\in\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
=>\(B=\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
A={-3;2;4/3}
b: \(B\subset X;X\subset A\)
=>\(B\subset A\)(vô lý)
Vậy: KHông có tập hợp X thỏa mãn đề bài