\(\frac{17^2}{x}=\frac{7x^2}{-119}\)
giá trị x thỏa mãn :
\(^{\frac{17^2}{x}=\frac{7x^2}{-119}}\)
Gía trị x thõa mãn
\(\frac{17^2}{x}\)= \(\frac{7x^2}{-119}\)
Giair giúp mk nha . Mình đang cần gấp
\(\frac{17^2}{x}=\frac{7x^2}{-119}\)
=\(17^2.\left(-119\right)=7x^2.x\)
=\(-34391=7x^3\)
=\(-4913=x^3\)
x=\(\sqrt[3]{-4913}=-17\)
giá trị x thỏa mãn : \(\frac{x}{109}\)=\(\frac{-109}{-x}\)
\(\frac{17^2}{x}\)=\(\frac{7\times x^2}{-119}\)
a)\(\frac{-109}{-x}=\frac{109}{x}\)
=>x2=1092
=>x=(109;-109)
b) \(\frac{289}{x}=\frac{7x^2}{-119}\)
=>7x3=-34391
=>x3=-4913
=>x=-17
Ai k mk mk sẽ k lại
15, giải pt sau.
1,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
2,\(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
3,\(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)
\(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
1/ \(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
=> \(\frac{9\left(x+3\right)}{12}+\frac{6}{12}=\frac{4\left(5x+9\right)}{12}-\frac{3\left(7x-9\right)}{12}\)
=> \(9\left(x+3\right)+6=4\left(5x+9\right)-3\left(7x-9\right)\)
=> \(9x+27+6=20x+36-21x+27\)
=> \(9x-20x+21x=27-27-6+36\)
=> \(10x=30\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
2.Ta có : \(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
=> \(\frac{10\left(2x-3\right)}{30}-\frac{5\left(x-3\right)}{30}=\frac{6\left(4x+3\right)}{30}-\frac{510}{30}\)
=> \(10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)
=> \(20x-30-5x+15=24x+18-510\)
=> \(20x-5x-24x=18-510+30-15\)
=> \(-9x=-477\)
=> \(x=53\)
Vậy phương trình có tập nghiệm là \(S=\left\{53\right\}\)
3/ Ta có : \(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)
=> \(\frac{30\left(5x-1\right)}{180}+\frac{40\left(x+4\right)}{180}=\frac{12\left(7x-5\right)}{180}+\frac{180x}{180}-\frac{180}{180}\)
=> \(30\left(5x-1\right)+40\left(x+4\right)=12\left(7x-5\right)+180x-180\)
=> \(150x-30+40x+160=84x-60+180x-180\)
=> \(150x+40x-180x-84x=-60-180-160+30\)
=> \(-74x=-370\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
Bài 2: Giải phương trình sau:
17) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
18) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
19) \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
20) \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
17) \(ĐKXĐ:x\ne1\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1-3x^2-2x^2+2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow-4x^2+3x+1=0\)
\(\Leftrightarrow-\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-\frac{1}{4}\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{4}\right\}\)
18) \(ĐKXĐ:x\ne1\)
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow3x^2-3x=0\)
\(\Leftrightarrow3x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
19) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\\x\ne\frac{1}{2}\end{cases}}\)
\(\frac{x+4}{2x^3-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\frac{x+4}{\left(2x-1\right)\left(x-2\right)}+\frac{x+1}{\left(2x-1\right)\left(x-3\right)}-\frac{2x+5}{\left(2x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-12+x^2-x-2-2x^2-x+10}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow x=-4\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)
20) \(ĐKXĐ:x\ne0\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}-\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)-3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow x^4+x-x^4+x-3=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\)
1. x+5=8\(\frac{2}{5}\)- 4x
2. 3*(3+1)=13,5
3. \(\frac{7x-1}{\frac{1}{3}}\)=1
4 17:(17-x)=17
giúp mình với trả lời được câu nào cũng được nhé
1. 17/25
2. ko hiểu đề bạn nhé
3. 4/21
4. 16
bạn trình bày ra nhé họ o mình
câu 2 : 3*(x+1)=13,5 mới đúng mình viết nhầm
4, 17 : (17 - x) = 17
17 - x = 1
x = 18
2.CMR C=\(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 102
\(GPT\frac{x^2+1}{120}+\frac{x^2+2}{119}+\frac{x^2+3}{118}=3\)
Đặt \(x^2+1=a\)
\(\Rightarrow\frac{a}{120}+\frac{a+1}{119}+\frac{a+2}{118}=3\)
\(\Leftrightarrow21241a=2506200\)
\(\Leftrightarrow a=\frac{2506200}{21241}\)
\(\Rightarrow x=.....\)
\(\frac{x^2}{120}+\frac{x^2+1}{119}+\frac{x^2+2}{118}=3\)
\(\Leftrightarrow\frac{x^2}{120}+1+\frac{x^2+1}{119}+1+\frac{x^2+2}{118}+1=6\)
\(\Leftrightarrow\frac{x^2+120}{120}+\frac{x^2+120}{119}+\frac{x^2+120}{118}=6\)
\(\Leftrightarrow\left(x^2+120\right)\left(\frac{1}{120}+\frac{1}{119}+\frac{1}{118}\right)=6\)
\(\Leftrightarrow x^2+120=\frac{6}{\frac{1}{120}+\frac{1}{119}+\frac{1}{118}}\)
\(\Leftrightarrow x^2=\frac{6}{\frac{1}{120}+\frac{1}{119}+\frac{1}{118}}-1\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{6}{\frac{1}{120}+\frac{1}{119}+\frac{1}{118}}-1}\\x=-\sqrt{\frac{6}{\frac{1}{120}+\frac{1}{119}+\frac{1}{118}-1}}\end{cases}}\)
tìm 3 số x,y,z thõa mãn đk sau :
\(\frac{3x-5y}{2}=\frac{7y-3z}{3}=\frac{5z-7x}{4}\)và x+y+z=17
tìm 3 số a,b,c biết :
\(\frac{3a-2b}{2}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)và a+b+c=-50