Bài 3: Phương trình đưa được về dạng ax + b = 0

H24

15, giải pt sau.

1,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)

2,\(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)

3,\(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)

\(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)

NL
27 tháng 2 2020 lúc 9:03

1/ \(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)

=> \(\frac{9\left(x+3\right)}{12}+\frac{6}{12}=\frac{4\left(5x+9\right)}{12}-\frac{3\left(7x-9\right)}{12}\)

=> \(9\left(x+3\right)+6=4\left(5x+9\right)-3\left(7x-9\right)\)

=> \(9x+27+6=20x+36-21x+27\)

=> \(9x-20x+21x=27-27-6+36\)

=> \(10x=30\)

=> \(x=3\)

Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)

2.Ta có : \(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)

=> \(\frac{10\left(2x-3\right)}{30}-\frac{5\left(x-3\right)}{30}=\frac{6\left(4x+3\right)}{30}-\frac{510}{30}\)

=> \(10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)

=> \(20x-30-5x+15=24x+18-510\)

=> \(20x-5x-24x=18-510+30-15\)

=> \(-9x=-477\)

=> \(x=53\)

Vậy phương trình có tập nghiệm là \(S=\left\{53\right\}\)

3/ Ta có : \(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)

=> \(\frac{30\left(5x-1\right)}{180}+\frac{40\left(x+4\right)}{180}=\frac{12\left(7x-5\right)}{180}+\frac{180x}{180}-\frac{180}{180}\)

=> \(30\left(5x-1\right)+40\left(x+4\right)=12\left(7x-5\right)+180x-180\)

=> \(150x-30+40x+160=84x-60+180x-180\)

=> \(150x+40x-180x-84x=-60-180-160+30\)

=> \(-74x=-370\)

=> \(x=5\)

Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
HH
Xem chi tiết
TT
Xem chi tiết
T8
Xem chi tiết
SG
Xem chi tiết
HB
Xem chi tiết