Cho x^4/a + y^4/b= 1/ a+b
CMR x^2016/a^2008 + y^2016/b^2008= 2/ (a+b)^2008
Cho a,b,x,y là các số thực thỏa mãn \(x^2+y^2=1và\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\). Chứng minh rằng: \(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}=\frac{2}{\left(a+b\right)^{2008}}\)
TÍNH
A,|X-3 Y|^2007+|Y+4|^2008
B,(X+Y)^2016+2017.|Y-1|
tinh
a, |x-3y|^2007+|y+4|^2008
b, (x+y)^2016+2017|y-1|
a, |x-3y|^2007+|y+4|^2008
<=>|x-3y|^2007|=0=>|x-3y|=0 =>x-3y=0 (1)
<=>|y+4|^2008=0=>|y+4|=0=>y+4=0 (2)
tu 1,2 => y=-4 =>x=-12
b, <=>(x+y)^2016=0=>x+y=0 (1)
<=>2017|y-1|=0=>|y-1|=0=>y-1=0 (2)
tu 1, 2 =>y=1=>x=-1
Chất là một từ tặng cho riêng dinhkhachoang
tìm x,y biết
a) 6x-14/13=5y+9 và 3x-2y=19
b) x+4/2008 + x+3/2009 = x+2/2010 + x+1/2016
cho a,b,x,y thỏa mãn :
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\) và\(x^2+y^2=1\)
Tính B=\(\dfrac{x^{2008}}{a^{1004}}+\dfrac{y^{2008}}{b^{1004}}\) khi a=2008 và b=2009
Áp dụng bđt Cauchy Shwarz dạng Engel, ta có:
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}=\dfrac{1}{a+b}\) (vì \(x^2+y^2=1\))
mà \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\) (theo đề bài)
\(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\) (tính chất của dãy tỉ số bằng nhau)
\(\Rightarrow x^2=\dfrac{a}{a+b}\)
\(B=\dfrac{x^{2008}}{a^{1004}}+\dfrac{y^{2008}}{b^{1004}}\)
\(=\left(\dfrac{x^2}{a}\right)^{1004}+\left(\dfrac{y^2}{b}\right)^{1004}\)
\(=2\times\left(\dfrac{\dfrac{a}{a+b}}{a}\right)^{1004}\) (vì \(\dfrac{x^2}{a}=\dfrac{y^2}{b}\))
Thay số vào ròi tính thoy ~~! (xxx)
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{\left(x^2+y^2\right)^2}{a+b}\left(dox^2+y^2=1\right)\)
\(\Leftrightarrow\dfrac{x^4}{a}+\dfrac{y^4}{b}-\dfrac{\left(x^2+y^2\right)^2}{a+b}=0\)
Tự biến hóa, hô phép ;v
\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\)
\(\Rightarrow\dfrac{x^{2008}}{a^{1004}}=\dfrac{y^{2008}}{b^{2004}}\Rightarrow B=2.\dfrac{x^{2008}}{a^{1004}}\)
\(\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)
\(\Rightarrow\dfrac{x^{2008}}{a^{1004}}=\dfrac{1}{\left(a+b\right)^{1004}}\)
\(\dfrac{2}{\left(a+b\right)^{1004}}=2.\dfrac{x^{2008}}{a^{1004}}=B\)
Vậy: \(B=\dfrac{2}{\left(a+b\right)^{1004}}\)
1,tìm GTNN
a, A=|2013-x| + |2014-x|
b, B=|x-2014| + |2015-x| + |x-2016|
2, tìm x,y,z
a, 2009 - |x-2009| = x
b, (2x-1)2008+(y-\(\frac{2}{5}\))2008+|x+y-z|=0
c, 42-3|y-3|=4(2012-x)4
d x2+xy-3x-3x+7=0
a) Cho a,b thỏa mãn a + 2b = 1
Tìm GTLN của: 2011 . a^2 + 2ab + 2008 . 2011
b) Cho x,y thỏa mãn x^2 + 2xy + 6x + 6y + 2y^2 + 8 = 0
Tìm GTLN và GTNN của: B = x + y + 2016
1.A=(2/3+3/4+4/5+................+99/100)*(1/2+2/3+..............+98/99);B=(1/2+2/3+..............+99/100)*(2/3+3//4+...................+98/99)
Tính A và B bằng cách thuận tiện nhất.
2.Cho a=2008/2009;b=2009/2008;c=1/2009;d=2007/2008
Tính a-b+c+d
3.Tìm STN m biết:
2016+m/m+2520+m/m+3024+m/m
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b};x^2+y^2=1\). Chứng minh:
a) bx2 = ay2
b) \(\frac{x^{2008}}{a^{2004}}+\frac{y^{2008}}{b^{2004}}=\frac{2}{\left(a+b\right)^{1004}}\)
Em vào câu hỏi tương tự tham khảo:
a) Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)
Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)
<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)
<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)
<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)
a) \(\frac{x^2}{a}=\frac{y^2}{b}\Leftrightarrow bx^2=ay^2\)
b) \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)
Khi đó: \(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=2\frac{x^{2008}}{a^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)