Những câu hỏi liên quan
NT
Xem chi tiết
NT
22 tháng 12 2015 lúc 12:32

giải chi tiết hộ mk nhá

 

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
5 tháng 2 2017 lúc 5:55

a,  |x-3y|^2007+|y+4|^2008

<=>|x-3y|^2007|=0=>|x-3y|=0 =>x-3y=0  (1)

<=>|y+4|^2008=0=>|y+4|=0=>y+4=0     (2)

tu 1,2 => y=-4 =>x=-12

b, <=>(x+y)^2016=0=>x+y=0  (1) 

    <=>2017|y-1|=0=>|y-1|=0=>y-1=0   (2)

tu 1, 2 =>y=1=>x=-1

Bình luận (0)
FN
3 tháng 8 2019 lúc 20:25

Chất là một từ tặng cho riêng dinhkhachoang

Bình luận (0)
2N
Xem chi tiết
ND
Xem chi tiết
PA
22 tháng 9 2017 lúc 20:07

Áp dụng bđt Cauchy Shwarz dạng Engel, ta có:

\(\dfrac{x^4}{a}+\dfrac{y^4}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}=\dfrac{1}{a+b}\) (vì \(x^2+y^2=1\))

\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\) (theo đề bài)

\(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\) (tính chất của dãy tỉ số bằng nhau)

\(\Rightarrow x^2=\dfrac{a}{a+b}\)

\(B=\dfrac{x^{2008}}{a^{1004}}+\dfrac{y^{2008}}{b^{1004}}\)

\(=\left(\dfrac{x^2}{a}\right)^{1004}+\left(\dfrac{y^2}{b}\right)^{1004}\)

\(=2\times\left(\dfrac{\dfrac{a}{a+b}}{a}\right)^{1004}\) (vì \(\dfrac{x^2}{a}=\dfrac{y^2}{b}\))

Thay số vào ròi tính thoy ~~! (xxx)

Bình luận (6)
UK
22 tháng 9 2017 lúc 22:08

\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{\left(x^2+y^2\right)^2}{a+b}\left(dox^2+y^2=1\right)\)

\(\Leftrightarrow\dfrac{x^4}{a}+\dfrac{y^4}{b}-\dfrac{\left(x^2+y^2\right)^2}{a+b}=0\)

Tự biến hóa, hô phép ;v

\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\)

\(\Rightarrow\dfrac{x^{2008}}{a^{1004}}=\dfrac{y^{2008}}{b^{2004}}\Rightarrow B=2.\dfrac{x^{2008}}{a^{1004}}\)

\(\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)

\(\Rightarrow\dfrac{x^{2008}}{a^{1004}}=\dfrac{1}{\left(a+b\right)^{1004}}\)

\(\dfrac{2}{\left(a+b\right)^{1004}}=2.\dfrac{x^{2008}}{a^{1004}}=B\)

Vậy: \(B=\dfrac{2}{\left(a+b\right)^{1004}}\)

Bình luận (0)
HB
Xem chi tiết
PH
Xem chi tiết
NS
Xem chi tiết
LH
Xem chi tiết
NC
27 tháng 4 2020 lúc 20:11

Em vào câu hỏi tương tự tham khảo: 

a) Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)

Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)

<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)

<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)

<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)

a) \(\frac{x^2}{a}=\frac{y^2}{b}\Leftrightarrow bx^2=ay^2\)

b)  \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)

Khi đó: \(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=2\frac{x^{2008}}{a^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)

Bình luận (0)
 Khách vãng lai đã xóa