Chứng minh : n\(^5\)+5n\(^3\)- 6n chia hết cho 30
Chứng minh rằng: Nếu n là số nguyên thì \(n^5+5n^3-6n\)chia hết cho 30
A=n MŨ 5 + 5n mũ 3-6n=(n mũ 5- 5n)
=n(n-1)(n+1)-5n(n+1)(n-1)
MỖI SỐ HẠNG CỦA a ĐỀU CHIA HẾT CHO 6 VÀ 5 MÀ (5:6)=1 NÊN A CHIA HẾT 30
chứng minh A = n^5 + 5n^4 + 5n^3 - 5n^2 - 6n chia hết cho 120
A = n ( n^4 + 5n^2 - 5n - 6 )
5n+5n.52=650
5n(1+52)=650
5n.26=650
=>5n=650:26
=>5n=25=52
=>n=2
chứng minh rằng: A=5n(5n+1)−6n(3n+2n)A=5n(5n+1)−6n(3n+2n) chia hết cho 91 với mọi số nguyên dương n
a) c/m: (5n+7)(4n+6) chia hết cho 2 (n thuộc N)
b) Chứng minh : (8n+1)(6n+5) ko chia hết cho 2 (n thuộc N)
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
CMR nếu n là số nguyên thì n5+5n3-6n chia hết cho 30
chứng minh rằng nếu n là số nguyên n^5+5n^3-6n chia hết cho 30
\(n^5+5n^3-6n=n\left(n^4+5n^2-6\right)=n\left(n^2+6\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n^2+6\right)\)
rồi làm tiếp nha nhác lm
Cho số nguyên dương n thỏa mãn 6n2+5n+1 là số chính phương
a) Chứng minh n chia hết cho 40
b) Chứng minh 5n+3 là hợp số
c) Tìm n nguyên dương sao cho 2n+9 là số nguyên tố
Cho số nguyên dương n thỏa mãn 6n2 + 5n + 1 là một số chính phương. Chứng minh rằng : n chia hết cho 40
Ta có: \(A=6n^2+5n+1=\left(3n+1\right)\left(2n+1\right)\)là số chính phương.
\(\Rightarrow3n+1,2n+1\)là số chính phương.
\(\Rightarrow3n+1=x^2;2n+1=y^2\)
\(\Rightarrow y\)lẻ.
\(\Rightarrow y=2k+1\Rightarrow2n+1=\left(2k+1\right)^2\Rightarrow n=2k\left(k+1\right)\)
\(\Rightarrow n\)chẵn.
\(\Rightarrow3n+1\) lẻ
\(\Rightarrow x\)lẻ.
\(\Rightarrow n=x^2-y^2⋮8\)
Lại có: \(x^2+y^2=5n+2\) chia \(5\)dư \(2\)
Vì số chính phương chia \(5\)dư \(0,1,4\)
\(\Rightarrow x^2,y^2\)chia \(5\)dư \(1\)
\(\Rightarrow x^2-y^2⋮5\)
\(\Rightarrow n⋮5\)
\(\Rightarrow n⋮5.8=40\left(đpcm\right)\)
Chứng minh
A = ( n+ 2) ( n+ 5) chia hết cho 2
B = (2n + 3) (n+6 ) (5n + 2) chia hết cho 3
a: TH1: n=2k
A=(n+2)(n+5)
=(2k+2)(2k+5)
=2(k+1)(2k+5)\(⋮\)2(1)
TH2: n=2k+1
\(A=\left(n+2\right)\left(n+5\right)\)
\(=\left(2k+1+2\right)\left(2k+1+5\right)\)
\(=\left(2k+3\right)\left(2k+6\right)\)
\(=2\left(k+3\right)\left(2k+3\right)⋮2\)(2)
Từ (1),(2) suy ra \(A⋮2\)
b: TH1: n=3k
\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)
\(=\left(2\cdot3k+3\right)\left(3k+6\right)\left(5\cdot3k+2\right)\)
\(=3\left(k+2\right)\left(6k+3\right)\left(15k+2\right)⋮3\left(3\right)\)
TH2: n=3k+1
\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)
\(=\left[2\left(3k+1\right)+3\right]\left[3k+1+6\right]\left[5\left(3k+1\right)+2\right]\)
\(=\left(6k+2+3\right)\left(3k+7\right)\left(15k+5+2\right)\)
=(6k+5)(3k+7)(15k+7)
=>B không chia hết cho 3
Vậy: B không chia hết cho 3 với mọi n
Chứng minh rằng:5n^3+15n^2+10n chia hết cho 30 với mọi số nguyên n
Ta có: n^5 - n = n (n^4 -1 )
=n (n^2-1)(n^2+1)
=n(n-1)(n+1)(n^2 - 4 +5)
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30
và n(n-1)(n+1)5 chia hết cho 30
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30
hay n^5-n chia hết cho 30