Những câu hỏi liên quan
DN
Xem chi tiết
NT
16 tháng 4 2023 lúc 13:54

=>6xy-8y-9x+12=6xy-15y+2x-5 và 2y-6+16=3x+6

=>-9x-8y+12+15y-2x+5=0 và 3x+6-2y-10=0

=>-11x+7y=-17 và 3x-2y=4

=>x=6 và y=7

Bình luận (0)
VT
Xem chi tiết
VX
9 tháng 6 2021 lúc 22:02

\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\left(-4\le x\le4\right)\) 

Dễ thấy x=0 là nghiệm của phương trình (1)

Xét x\(\ne\)0.Nhân cả 2 vế của (1) với \(\left(\sqrt{4+x}+2\right)\) được

\(x\left(\sqrt{4-x}+2\right)=-2x\left(\sqrt{4+x}+2\right)\)

\(\Rightarrow\sqrt{4-x}+2=-2\left(\sqrt{4+x}+2\right)\)

\(\Rightarrow\sqrt{4-x}=-2\sqrt{4+x}-6\)

\(\Rightarrow\sqrt{4-x}< 0\)(vô nghiệm)

Vậy nghiệm của phương trình (1) là x=0

-Chúc bạn học tốt-

Bình luận (0)
HN
9 tháng 6 2021 lúc 22:19

Bài giải:

Điều kiện:\(\left\{{}\begin{matrix}x+4\ge0\\4-x\ge0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\ge-4\\x\le4\end{matrix}\right.\)\(-4\le x\le4\)

Pt: \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)

\(\dfrac{x+4-4}{\sqrt{x+4}+2}\left(\sqrt{4-x}+2\right)=-2x\)

\(\dfrac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}+2x=0\)

\(x\left(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2\right)=0\)

\(x=0\left(tm\right)\)

Vì \(\sqrt{4-x}+2>0\) và \(\sqrt{x+4}+2>0\) với mọi x

Nên \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}>0\) ⇒ \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2>0\)

Vậy pt có nghiệm duy nhất là \(x=0\)

Bình luận (0)
DY
Xem chi tiết
HP
8 tháng 9 2021 lúc 21:57

ĐK: \(x,y\ne0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x^3}=y-\dfrac{1}{y^3}\\\left(x-4y\right)\left(2x-y+4\right)=-36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y-\left(\dfrac{1}{x^3}-\dfrac{1}{y^3}\right)=0\\\left(x-4y\right)\left(2x-y+4\right)=-36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y+\dfrac{\left(x-y\right)\left(x^2+y^2+xy\right)}{x^3y^3}=0\\\left(x-4y\right)\left(2x-y+4\right)=-36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left(x-y\right)\left(x^3y^3+x^2+y^2+xy\right)}{x^3y^3}=0\\\left(x-4y\right)\left(2x-y+4\right)=-36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\\left(x-3x\right)\left(2x-x+4\right)=-36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\-2x^2-8x=-36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2+4x-18=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=-2\pm\sqrt{22}\left(tm\right)\)

Bình luận (0)
H24
Xem chi tiết
HP
13 tháng 10 2020 lúc 18:40

Đúng đề chưa vậy

Bình luận (0)
 Khách vãng lai đã xóa
SB
Xem chi tiết
VD
26 tháng 11 2017 lúc 21:44

bn  thử quy đồng rồi nhaan liên hợp đi có thể ra đấy

Bình luận (0)
SB
27 tháng 11 2017 lúc 20:05

dài lém. Lười

Bình luận (0)
H24
Xem chi tiết
ZZ
16 tháng 7 2019 lúc 16:55

\(x^5+y^5-\left(x+y\right)^5\)

\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

Bình luận (0)
QN
Xem chi tiết
NT
5 tháng 3 2021 lúc 13:15

a) Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

ĐKXĐ: \(x\notin\left\{3;\dfrac{1}{5}\right\}\)

Ta có: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{3\left(3-x\right)}{\left(5x-1\right)\left(3-x\right)}+\dfrac{2\left(5x-1\right)}{\left(3-x\right)\left(5x-1\right)}=\dfrac{4}{\left(5x-1\right)\left(3-x\right)}\)

Suy ra: \(9-3x+10x-2=4\)

\(\Leftrightarrow7x+7=4\)

\(\Leftrightarrow7x=-3\)

hay \(x=-\dfrac{3}{7}\)

Vậy: \(S=\left\{-\dfrac{3}{7}\right\}\)

Bình luận (0)
HH
5 tháng 3 2021 lúc 16:33
Bình luận (0)
DP
Xem chi tiết
VT
8 tháng 11 2016 lúc 8:05

Thực hiện các phép đổi tương đương , ta đưa ( 1 ) về dạng :

\(\frac{x+4}{2x^2-5x+2}-\frac{x+4}{2x^2-7x+3}=0\)

\(\Leftrightarrow\left(x+4\right)\left(\frac{1}{2x^2-5x+2}-\frac{1}{2x^2-7x+3}\right)=0\)

\(\Leftrightarrow\frac{\left(x+4\right)\left(1-2x\right)}{\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)}=0\)

\(\Leftrightarrow\left(x+4\right)\left(1-2x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=\frac{1}{2}\end{array}\right.\)

Thữ vào mẫu thức : Với \(x=\frac{1}{2}\) thì \(2x^2-5x+2=0\)

Với \(x=-4\) thì \(\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)\ne0\)

Vậy phương trình ( 1 ) là cho nghiệm duy nhất là \(x=-4\)

 

Bình luận (0)
PA
Xem chi tiết
H24
Xem chi tiết
HH
27 tháng 12 2019 lúc 22:13

ĐKXĐ:...

pt\(\Leftrightarrow4\left(x^2-2x\right)+16\sqrt{x^2-2x-3}-21=0\)

Đặt \(\sqrt{x^2-2x-3}=t\left(t\ge0\right)\Rightarrow t^2=x^2-2x-3\Leftrightarrow t^2+3=x^2-2x\)

\(\Rightarrow4\left(t^2+3\right)+16t-21=0\)

\(\Leftrightarrow4t^2+12+16t-21=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{1}{2}\\t=-\frac{9}{2}\left(l\right)\end{matrix}\right.\Rightarrow t=\frac{1}{2}\)

\(\Rightarrow x^2-2x-3=\frac{1}{4}\Leftrightarrow\left[{}\begin{matrix}x=\frac{2+\sqrt{17}}{2}\\x=\frac{2-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)

Vậy \(x=\frac{2+\sqrt{17}}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa