số dư khi đa thức x^13 +1 chia cho x-1
Một đa thức khi chia cho x+1 thì dư 2, chia cho x+2 thì dư 3. Tìm số dư khi đa thức đó chia cho (x+1)(x+2)
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.
Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
1) Đa thức P(x) khi chia cho x-2 thì dư 5, khi chia cho x-3 thì dư 7. Phần dư của đa thức P(x) khi chia cho (x-2)(x-3) là?
2) tÌM ĐA THỨC P(X) biết p(x) chia x-1 dư -2, P(x) chia cho x+1 dư 3, P(x) chia x2 -1 được thương là 2x và còn dư
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
I. Tìm đa thức dư trong phép chia đa thức P(x) cho da thức (x-2)(x^ 2 +1),biết P(. ) chia cho vă7 có dư là 13; P(x) chia cho x ^ 2 + 1 có dư là 3x+ underline 2
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
Biết rằng đa thức f(x) chia cho đa thức g(x) = x - 2 được dư là 21, chia cho đa thức h(x) = x ^ 2 + 2 được đa thức dư là 2x−1. Tìm đa thức dư khi chia đa thức f(x) cho đa thức h(x).g(x)
đa thức f(x) ki chia cho x+1 dư 4 chia cho x^2+1 dư 2x+1. tìm phần dư khi chia đa thức f(x) cho (x+1)(x^2+1)
Đa thức f(x) khi chia cho x+1 dư 4 , khi chia cho \(x^2+1\) dư 2x+3. Tìm đa thức dư khi chia f(x) cho \(\left(x+1\right)\left(x^2+1\right)\)
Bạn vào đây xem thử
Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến