Những câu hỏi liên quan
MK
Xem chi tiết
NC
31 tháng 5 2018 lúc 9:35

Xét các số:

 2,22 , 222,..., 2222...222

                        14 chữ số 2

1 số  tự nhiên khi chia cho 13 sẽ có thể có các số dư là 0,1, 2, 3,..., 12 ( 13  số dư ) mà  dãy trên có 14 số nên theo nguyên lí Diricle sẽ có ít nhất 2 số có cùng số dư khi chia cho 13

 Giả sử 2 số đó là

     222...22             và            222...22

   m chữ số 2                        n chữ số 2                  ( m, n thuộc N*,   0<m<n \(\le\)20 )

=>      222...22          \(_-\)222...22        \(⋮\)13

      n chữ số 2             m chữ số 2

<=>   222...222 000....00            \(⋮\)    13

n-m chữ số 2      m chữ số 0

<=>  222..222      x    10m      \(⋮\)13

   n-m chữ số 2

       Mà ( 10m, 13 ) = 1

=> 222....2222          \(⋮\)13

n-m chữ số 2

          Vậy tồn tại 1 số tự nhiên gồm toàn chữ số 2 là bội của 13.

                      Hok tốt

Bình luận (0)
HP
27 tháng 6 2023 lúc 14:47

Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.

Bình luận (0)
H24
Xem chi tiết
TN
25 tháng 1 2015 lúc 9:38

Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.

Bình luận (1)
HP
27 tháng 6 2023 lúc 14:47

Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.

Bình luận (0)
KC
Xem chi tiết
LL
Xem chi tiết
DT
Xem chi tiết
VV
Xem chi tiết
NT
15 tháng 3 2020 lúc 10:36

Tham khảo: https://olm.vn/hoi-dap/detail/1839321884.html

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 3 2020 lúc 10:36

Bn vào link này : https://olm.vn/hoi-dap/detail/107117815751.html

# HOK TỐT #

Bình luận (0)
 Khách vãng lai đã xóa
W1
Xem chi tiết
TQ
22 tháng 2 2020 lúc 11:12

Xét 31 số

7

77

777

...

7777....7777

31 chữ số 7

Nếu có 1 trong 31 số chia hết cho 31 thì bài toán được chứng minh

Nếu ko có số nào chia hết cho 31 thì ta có:Mọi số tự nhiên ko chia hết cho 31 thì có 30 trường hợp dư là 1;2;3;4;...;30 có 30 trường hợp

Mà số 31 số nên theo nguyên lý Đi rích-lê thì có ít nhất 2 số có cùng số dư khi chia cho 31

Gọi 2 số đó là:77777.....77777                       77777............77777                \(\left(1\le n< m\le31\right)\)

                    n chữ số                                 m chữ số

\(\Rightarrow777...7777-7777....777⋮31\)

     m chữ số            n chữ số

\(\Rightarrow777.....777.10^n⋮31\)

   m-n chữ số

Mà (10^n,31)=1

\(\Rightarrow7777.....77777⋮31\)

    m-n chứ số

Ró ràng m-n>0 vì m>n

Suy ra điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
26 tháng 5 2017 lúc 15:39

Xét 1 A , mẫu A không chứa thừa số nguyên tố 2 và 5 nên  1 A viết được dưới dạng số thập phân vô hạn tuần hoàn đơn.

1 A = a 1 a 2 ... a n ¯ 99...9 ⏟ n ⇒ 99...9 ⏟ n = A . a 1 a 2 ... a n ¯ ⇒ 99...9 ⏟ n ⋮ A .

Bình luận (0)
ND
27 tháng 7 2021 lúc 14:54

bạn lấy đâu 1/A người ta cho A thôi mà

Bình luận (0)
 Khách vãng lai đã xóa
KD
Xem chi tiết