mik nghĩ là : 222222222222
Xét dãy số:2,22,222,...,22...22(131 chữ số 2) có 131 số.
Nếu có số chia hết cho 131 thì bài toán được chứng minh.
Nếu ko có số nào chia hết cho 131 thì có 131 phép chia có số dư thuộc{1;2;3;...;130}.Có nhiều nhất 130 số dư khác nhau.
Suy ra tồn tại 2 phép chia có số dư bằng nhau khi chia cho 131. Khi đó có hiệu của chúng chia hết cho 131.
Ta giả sử 2 số đó là :
222...2(m chữ số 2) và 222...2( n chữ số 2). (m>n; m,n thuộc{1;2;3;..;131}.
Và 22...2(m chữ số 2)- 22..2( n chữ số 2) chia hết cho 131.
Suy ra 22...20000...0( m - n chữ số 2 và n chữ số 0) chia hết cho 131.
Suy ra 222..2(m - n chữ số 2)× 10^n Chia hết cho 131.
Mà 10^ n và 131 là 2 số nguyên tố cùng nhau.
Suy ra 222...2( m -n chữ số 2) chia hết cho 131.
Vậy luôn tồn tại 1 bội của 131 gồm toàn chữ số 2.