\(C=\dfrac{2022.1234+2000}{1235.2022-22}\)
help!
\(\dfrac{x-2000}{22}+\dfrac{x-2005}{17}+\dfrac{x}{674}=5\)
Mn giúp mình câu này với. Cảm ơn nhiều nhé
Có gì sai sai đấy ạ, cho xin hỏi là có chép sai đề ko ạ?
\(\dfrac{x-2000}{22}\) + \(\dfrac{x-2005}{17}\) + \(\dfrac{x}{674}\) = 5
\(\dfrac{x-2000}{22}\) + \(\dfrac{x-2005}{17}\) + \(\dfrac{x}{674}\) - 5 = 0
(\(\dfrac{x-2000}{22}\) - 1) + (\(\dfrac{x-2005}{17}\) - 1) + (\(\dfrac{x}{674}\) - 3) = 0
\(\dfrac{x-2022}{22}\) + \(\dfrac{x-2022}{17}\) + \(\dfrac{x-2022}{674}\) = 0
(\(x\) - 2022).(\(\dfrac{1}{22}\) + \(\dfrac{1}{17}\) + \(\dfrac{1}{647}\)) = 0
Vì \(\dfrac{1}{22}\) + \(\dfrac{1}{17}\) + \(\dfrac{1}{647}\) > 0
Nên \(x\) - 2022 = 0
\(x\) = 2022
Vậy \(x\) = 2022
I : Giải các phương trình
a) \(\dfrac{x-2}{2000}+\dfrac{x-3}{1999}=\dfrac{x-4}{1998}+\dfrac{x-5}{1997}\)
b) \(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}=10\)
c) \(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\)
help me
\(a.\dfrac{x-2}{2000}+\dfrac{x-3}{1999}=\dfrac{x-4}{1998}+\dfrac{x-5}{1997}\\ \Leftrightarrow\dfrac{x-2}{2000}-1+\dfrac{x-3}{1999}-1=\dfrac{x-4}{1998}-1+\dfrac{x-5}{1997}-1\\ \Leftrightarrow\dfrac{x-2}{2000}-\dfrac{2000}{2000}+\dfrac{x-3}{1999}-\dfrac{1999}{1999}=\dfrac{x-4}{1998}-\dfrac{1998}{1998}+\dfrac{x-5}{1997}-\dfrac{1997}{1997}\\ \Leftrightarrow\dfrac{x-2002}{2000}+\dfrac{x-2002}{1999}=\dfrac{x-2002}{1998}+\dfrac{x-2002}{1997}\\ \Leftrightarrow\dfrac{x-2002}{2000}+\dfrac{x-2002}{1999}-\dfrac{x-2002}{1998}-\dfrac{x-2002}{1997}=0\\ \Leftrightarrow\left(x-2002\right)\left(\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\right)=0\\ \)
\(Do:\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\ne0\\ \Rightarrow x-2002=0\\ \Leftrightarrow x=2002\\ Vậy:S=\left\{2002\right\}\)
Mấy câu khác tương tự :v
b: \(\Leftrightarrow\left(\dfrac{148-x}{25}-1\right)+\left(\dfrac{169-x}{23}-2\right)+\left(\dfrac{186-x}{21}-3\right)+\left(\dfrac{199-x}{19}-4\right)=0\)
=>123-x=0
=>x=123
c: \(\Leftrightarrow\dfrac{x-2}{2017}+1=\dfrac{x-1}{2018}+\dfrac{x}{2019}\)
\(\Leftrightarrow\left(\dfrac{x-2}{2017}-1\right)=\left(\dfrac{x-1}{2018}-1\right)+\left(\dfrac{x}{2019}-1\right)\)
=>x-2019=0
=>x=2019
chứng minh rằng : nếu 3 số a,b,c thỏa mãn \(a+b+c=2000\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2000}\) thì 1 trong 3 số phải có 1 số bằng \(2000\)
ĐKXĐ : a;b;c \(\ne0\)
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2000}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}-\dfrac{1}{a}\)
\(\Leftrightarrow\dfrac{b+c}{bc}=\dfrac{-\left(b+c\right)}{a\left(a+b+c\right)}\)
\(\Leftrightarrow\left(b+c\right)\left(\dfrac{1}{bc}+\dfrac{1}{a\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(b+c\right).\dfrac{a\left(a+b+c\right)+bc}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(b+c\right).\dfrac{a^2+ab+ac+bc}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\a+c=0\end{matrix}\right.\left(1\right)\)
Từ (1) kết hợp a + b + c = 2000 ta được điều phải chứng minh
Bài 1: Tính tổng: S = - \(\dfrac{7}{20}\)-\(\dfrac{7}{200}\)-\(\dfrac{7}{2000}\)-\(\dfrac{7}{20000}\)
Bài 2: So sánh: 3\(^{4000}\)và 9\(^{2000}\)
2\(^{225}\)và 3\(^{150}\)
Bài 3: Tìm x, để: | x -7 | = x - 7
Các bạn help mình vs!!!
Thanks các bạn nhìu <3
1,
\(S=-\dfrac{7}{20}-\dfrac{7}{200}-\dfrac{7}{2000}-\dfrac{7}{20000}\\ =-\dfrac{7}{20}\left(1+\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{1000}\right)\\ =-\dfrac{7}{20}\left(\dfrac{1000+100+10+1}{1000}\right)\\ =-\dfrac{7}{20}\cdot\dfrac{1111}{1000}\\ =\dfrac{7777}{20000}\)
2,
a, \(Tacó:\\ 9^{2000}=\left(3^2\right)^{2000}=3^{4000}\\ \Rightarrow9^{2000}=3^{4000}\)
b,
\(2^{225}=\left(2^{15}\right)^{15}=32768^{15}\\ 3^{150}=\left(3^{10}\right)^{15}=59049^{15}\\ Vì32768< 59049nên32768^{15}< 59049^{15}\\ \Rightarrow2^{225}< 3^{150}\)
3,
\(\left|x-7\right|=x-7\\ Vì\left|x-7\right|\ge0\forall x\\ \Rightarrow x-7\ge0\forall x\\ \Leftrightarrow x-7\ge0\\ \Leftrightarrow x\ge7\\ Vậyx\ge7\)
Bài 3:
\(\left|x-7\right|=x-7\)
Khi giá trị tuyệt đối của \(x-7\) bằng chính nó, thì \(x-7\) phải \(\ge0\)
Suy ra: \(x-7\ge0\Rightarrow x\ge7\)
Vậy \(x\ge 7\)
Trong các phân số \(\dfrac{5}{4}\);\(\dfrac{22}{23}\);\(\dfrac{9}{9}\);\(\dfrac{24}{23}\) phân số bé nhất là
A.\(\dfrac{24}{23}\) B.\(\dfrac{22}{23}\) C.\(\dfrac{5}{4}\) D.\(\dfrac{9}{9}\)
`=>` `B`
Vì các phân số cồn lại thuộc dạng `(x >= 1)`
Bài 1: So sánh
a) A=\(\dfrac{13^{15}+1}{13^{16}+1}\) và B=\(\dfrac{13^{16}+1}{13^{17}+1}\)
b) C=\(\dfrac{1999^{1999}+1}{1999^{2000}+1}\) và D=\(\dfrac{1999^{1998}+1}{1999^{1999}+1}\)
Bài 2: So sánh các ps sau một cách hợp lý
a) \(\dfrac{29}{33};\dfrac{22}{37};\dfrac{29}{37}\)
b) \(\dfrac{163}{257};\dfrac{163}{221};\dfrac{149}{257}\)
Bài 1:
a) Ta có: \(13A=\dfrac{13^{16}+13}{13^{16}+1}=1+\dfrac{12}{13^{16}+1}\)
\(13B=\dfrac{13^{17}+13}{13^{17}+1}=1+\dfrac{12}{13^{17}+1}\)
Vì \(\dfrac{12}{13^{16}+1}>\dfrac{12}{13^{17}+1}\Rightarrow1+\dfrac{12}{13^{16}+1}>1+\dfrac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\)
\(\Rightarrow A>B\)
Vậy A > B
b) Ta có: \(1999C=\dfrac{1999^{2000}+1999}{1999^{2000}+1}=1+\dfrac{1998}{1999^{2000}+1}\)
\(1999D=\dfrac{1999^{1999}+1999}{1999^{1999}+1}=1+\dfrac{1998}{1999^{1999}+1}\)
\(\dfrac{1998}{1999^{2000}+1}< \dfrac{1998}{1999^{1999}+1}\Rightarrow1+\dfrac{1998}{1999^{2000}+1}< 1+\dfrac{1999}{1999^{1999}+1}\)
\(\Rightarrow1999C< 1999D\)
\(\Rightarrow C< D\)
Vậy C < D
(1 điểm) Thực hiện các phép tính:
a) $0,75+\dfrac{9}{5}\left(1,5-\dfrac{2}{3}\right)^2$
b) $\dfrac{-22}{25}+\left(\dfrac{22}{7}-0,12\right)$
0,75 + \(\dfrac{9}{5}\) ( 1,5 - \(\dfrac{2}{3}\) )2
= 0,75 + \(\dfrac{9}{5}\) ( \(\dfrac{3}{2}\) - \(\dfrac{2}{3}\))2
= 0,75 + \(\dfrac{9}{5}\) (\(\dfrac{5}{6}\))2
= 0,75 + \(\dfrac{5}{4}\)
= 0,75 + 1,25
= 2
\(\dfrac{-22}{25}\) + ( \(\dfrac{22}{7}\) - 0,12)
= \(\dfrac{-22}{25}\) + ( \(\dfrac{22}{7}\) - \(\dfrac{3}{25}\))
= \(\dfrac{-22}{25}\) + \(\dfrac{22}{7}\) - \(\dfrac{3}{25}\)
= - ( \(\dfrac{22}{25}\) + \(\dfrac{3}{25}\)) + \(\dfrac{22}{7}\)
= -1 + \(\dfrac{22}{7}\)
= \(\dfrac{-7}{7}\) + \(\dfrac{22}{7}\)
= \(\dfrac{15}{7}\)
cvAjcfajshcfaSsjhcfzsjhcvZXVxhjcvzhjc
Bài 1: Tìm giá trị nhỏ nhất hoặc lớn nhất của:
a)1-2x + 3
b) 1-8x+1
Bài 2:
So sánh các phân số \(\dfrac{n+5}{n-2}\) và \(\dfrac{n+9}{n+2}\) với n thuộc N và n > 2
Bài 3: Tính nhanh
\(\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{7}{11}}\)
Các bạn ơi giúp mk với mk cần gấp!
Bài 1:
a: \(\left|2x-1\right|+3>=3\)
Dấu '=' xảy ra khi x=1/2
b: \(=-\left|8x+1\right|+1\le1\)
Dấu '=' xảy ra khi x=-1/8
Soc Trang province/ follow / new rural development programme/ 22 poor villages/ since 2000...
Local people/ rice, vegetables/ and/ animals...
agricultural work become/ less difficult/ thanks/ machinery.
Electricty/ help/ children/ study better/ and/ paved roads/ make/ transportation/ easier.
Tính.
a) \(\dfrac{9}{11}-\dfrac{3}{11}\) b) \(\dfrac{10}{4}-\dfrac{5}{4}\) c) \(\dfrac{22}{15}-\dfrac{8}{15}\)
a) \(\dfrac{9}{11}-\dfrac{3}{11}=\dfrac{9-3}{11}=\dfrac{6}{11}\)
b) \(\dfrac{10}{4}-\dfrac{5}{4}=\dfrac{10-5}{4}=\dfrac{5}{4}\)
c) \(\dfrac{22}{15}-\dfrac{8}{15}=\dfrac{22-8}{15}=\dfrac{14}{15}\)