Những câu hỏi liên quan
MQ
Xem chi tiết
TK
13 tháng 3 2024 lúc 15:22

 

Đặt �=�+1,�=�+2,�=�+3, bài toán trở thành:

���=4(�−1)(�−2)(�−3)

Bình luận (0)
ND
Xem chi tiết
TN
Xem chi tiết
ZN
25 tháng 4 2021 lúc 9:45

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TN
Xem chi tiết
ZZ
21 tháng 7 2020 lúc 21:16

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
21 tháng 7 2020 lúc 21:01

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
21 tháng 7 2020 lúc 21:05

1) có \(2y\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow\left(\sqrt{xy}+\frac{1}{4\sqrt{xy}}\right)^2+\frac{15}{16xy}+\frac{1}{2}\ge\frac{15}{16}\cdot4+\frac{1}{2}=\frac{17}{4}\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
PH
9 tháng 9 2018 lúc 7:31

    \(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)

\(=\frac{-x^2-x-1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\)

\(=\frac{\left(y^2-x^2\right)+y-x}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}\)

\(=\frac{\left(y-x\right)\left(y+x\right)+y-x}{x^2y^2+x^2y+xy^2+x^2+xy+y^2+x+y+1}\)

\(=\frac{y-x+y-x}{x^2y^2+xy\left(x+y\right)+x\left(x+y\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+xy+x+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+x\left(y+1\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+\left(1-y\right)\left(y+1\right)+y^2+\left(x+y\right)+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+1-y^2+y^2+1+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+3}\)

Bình luận (0)
TD
Xem chi tiết
NT
31 tháng 8 2023 lúc 21:21

x^2+y^2=(x+y)^2-2xy

=5^2-2*3

=25-6

=19

x^3+y^3=(x+y)^3-3xy(x+y)

=5^3-3*3*5

=125-9*5

=80

(x-y)^2=(x+y)^2-4xy=5^2-4*3=13

=>\(x-y=\sqrt{13}\)

Bình luận (0)
DN
Xem chi tiết
NL
22 tháng 3 2022 lúc 17:05

\(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}=1\)

Áp dụng BĐT Bunhiacopxki:

\(\left(\dfrac{2}{3}+1+\dfrac{1}{3}\right)\left(\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}\right)\ge\left(\sqrt{\dfrac{2}{3}.\dfrac{3}{2}x^2}+\sqrt{1.\left(y+\dfrac{z}{2}\right)^2}+\sqrt{\dfrac{1}{3}.\dfrac{3z^2}{4}}\right)^2\)

\(\Leftrightarrow2.1\ge\left(x+y+\dfrac{z}{2}+\dfrac{z}{2}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Bình luận (0)
AN
22 tháng 3 2022 lúc 18:10

\(\frac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow\left(x+y+z\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
DT
22 tháng 3 2022 lúc 16:48

em chịu

Bình luận (0)
MC
Xem chi tiết
GN
Xem chi tiết