Những câu hỏi liên quan
NH
Xem chi tiết
NH
Xem chi tiết
TT
7 tháng 6 2015 lúc 21:09

\(\left(x+y\right)^2+2.3\left(x+y\right)+9+y^2-4=0\)

\(\Leftrightarrow\left(x+y+3\right)^2+\left(y-2\right)\left(y+2\right)=0\)

Để phương trình có nghiệm tương đương với x+y+3=0                           \(\Leftrightarrow\)  x+y=-3

                                                                              y+2=0 hoặc y-2=0                và y=-2 hoặc 2 

Vậy GTLN của P=x+y+2=-3+2=-1 tại y=-2 ;x = -1 hoặc y=2 ; x=-5

Bình luận (0)
PH
Xem chi tiết
SM
Xem chi tiết
DF
Xem chi tiết
NL
10 tháng 1 2021 lúc 23:36

Bạn tham khảo:

Cho ba số thực dương x;y;z thoả mãn \(5\left(x y z\right)^2\ge14\left(x^2 y^2 z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24

Bình luận (0)
OA
Xem chi tiết
CK
Xem chi tiết
NL
28 tháng 3 2023 lúc 17:17

Chắc đề là \(x+y+z=3\)

Ta có: 

\(\left(2x+y+z\right)^2=\left(x+y+x+z\right)^2\ge4\left(x+y\right)\left(x+z\right)\)

\(\Rightarrow P\le\dfrac{x}{4\left(x+y\right)\left(x+z\right)}+\dfrac{y}{4\left(x+y\right)\left(y+z\right)}+\dfrac{z}{4\left(x+z\right)\left(y+z\right)}\)

\(\Rightarrow P\le\dfrac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{4\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\dfrac{xy+yz+zx}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Mặt khác:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)

\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)

\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\dfrac{1}{3}.\left(x+y+z\right).\dfrac{1}{3}\left(xy+yz+zx\right)\)

\(=\dfrac{8}{9}\left(x+y+z\right)\left(zy+yz+zx\right)=\dfrac{8}{3}\left(xy+yz+zx\right)\)

\(\Rightarrow P\le\dfrac{xy+yz+zx}{2.\dfrac{8}{3}\left(xy+yz+zx\right)}=\dfrac{3}{16}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
ND
Xem chi tiết
BB
Xem chi tiết
NL
3 tháng 3 2021 lúc 22:12

\(A=\sqrt{\left(1.x+\dfrac{1}{2}.2y\right)^2}\le\sqrt{\left(1+\dfrac{1}{4}\right)\left(x^2+4y^2\right)}=5\)

\(A_{max}=5\) khi \(\left(x;y\right)=\left(4;1\right);\left(-4;-1\right)\)

Bình luận (0)