Những câu hỏi liên quan
KT
Xem chi tiết
NT
28 tháng 10 2023 lúc 21:04

a: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>=0\end{matrix}\right.\)

=>3<=x<=5

\(\sqrt{x-3}+\sqrt{5-x}=2\)

=>\(\sqrt{x-3}-1+\sqrt{5-x}-1=0\)

=>\(\dfrac{x-3-1}{\sqrt{x-3}+1}+\dfrac{5-x-1}{\sqrt{5-x}+1}=0\)

=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{x-3}+1}-\dfrac{1}{\sqrt{5-x}+1}\right)=0\)

=>x-4=0

=>x=4

Bình luận (0)
TH
Xem chi tiết
KS
30 tháng 9 2019 lúc 11:18

Áp dụng BĐT Cauchy - Shwarz ta có :

\(VT^2=\left(\sqrt{x-4}+\sqrt{6-x}\right)^2\)

\(\le\left(1+1\right)\left(x-4+6-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\left(1\right)\)

Và \(VP=x^2-10x+27=x^2-10x+25+2\)

\(=\left(x-5\right)^2+2\ge2\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow VP\le VT=2\)

Khi \(VP=VT=2\Rightarrow x=5\)

Chúc bạn học tốt !!!

Bình luận (0)
VB
Xem chi tiết
YY
6 tháng 7 2018 lúc 9:03

bài 1 :điều kiện\(4\le x\le6\) 

 ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)

\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)

bài 2 :điều kiện : \(2\le x\le4\)

ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)

Bình luận (0)
NT
Xem chi tiết
KN
28 tháng 6 2019 lúc 5:50

Vế phải đâu bạn?

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
HN
19 tháng 8 2016 lúc 19:51

d/ Điều kiện xác định : \(4\le x\le6\)

 Áp dụng bđt Bunhiacopxki vào vế trái của pt : 

\(\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le\left(1^2+1^2\right)\left(x-4+6-x\right)\)

\(\Leftrightarrow\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le4\Leftrightarrow\sqrt{x-4}+\sqrt{6-x}\le2\)

Xét vế phải : \(x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\)

Suy ra pt tương đương với : \(\begin{cases}\sqrt{x-4}+\sqrt{6-x}=2\\x^2-10x+27=2\end{cases}\) \(\Leftrightarrow x=5\) (tmđk)

Vậy pt có nghiệm x = 5

Bình luận (0)
HN
19 tháng 8 2016 lúc 20:02

a/ ĐKXĐ : \(x\ge0\) 

\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}-3\right|=1\) (1)

Tới đây xét các trường hợp : 

1. Nếu \(x>9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=9\) (ktm)

2. Nếu \(0\le x< 4\) thì pt (1) \(\Leftrightarrow2-\sqrt{x}+3-\sqrt{x}=1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (ktm)

3. Nếu \(4\le x\le9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+3-\sqrt{x}=1\Leftrightarrow1=1\left(tmđk\right)\)

Vậy kết luận : pt có vô số nghiệm nếu x thuộc khoảng \(4\le x\le9\) 

Bình luận (0)
HN
19 tháng 8 2016 lúc 20:07

b) ĐKXĐ : \(x\ge0,y\ge1\)

Ta có : \(x+y+4=2\sqrt{x}+4\sqrt{y-1}\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left[\left(y-1\right)-4\sqrt{y-1}+4\right]=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-2\right)^2=0\)

\(\Leftrightarrow\begin{cases}\left(\sqrt{x}-1\right)^2=0\\\left(\sqrt{y-1}-2\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=5\end{cases}\) (tmđk)

Vậy ........

Bình luận (0)
H24
Xem chi tiết