VK

Giải phương trình

\(^{x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}}\)

TD
18 tháng 12 2016 lúc 11:42

Bình phương liên tục 2 vế và bạn có một pt bậc 8!!!

Đùa thôi chứ cách giải nghiêm túc nè.

Nhận xét: Đoán trước \(x=5\) là nghiệm nên ta sử dụng lượng liên hợp để có nhân tử \(x-5\) 2 vế.

\(\sqrt{6-x}-1+\sqrt{x-4}-1=x^2-10x+25\)

\(\frac{5-x}{\sqrt{6-x}+1}+\frac{x-5}{\sqrt{x-4}+1}=\left(x-5\right)^2\)

Ta xét \(x\ne5\) ta còn lại \(x-5=\frac{1}{\sqrt{x-4}+1}-\frac{1}{\sqrt{6-x}+1}\)

Ta xét \(x< 5\). Khi đó \(\frac{1}{\sqrt{x-4}+1}-\frac{1}{\sqrt{6-x}+1}>0>x-5\) nên vô nghiệm.

Trường hợp \(x>5\) tương tự. Một bài toán hay!

Bình luận (0)
TN
18 tháng 12 2016 lúc 16:55

Vậy thôi chứ bài này ko cần xoắn như Trần...Đạt

Đk:...

\(VT=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\left(1\right)\)

\(VP^2=\left(6-x\right)+\left(x-4\right)+2\sqrt{\left(6-x\right)\left(x-4\right)}\)

\(=2+2\sqrt{\left(6-x\right)\left(x-4\right)}\)

\(\le2+\left(6-x\right)+\left(x-4\right)=4\) (BĐT AM-GM) 

\(\Rightarrow VP^2\le4\Rightarrow VP\le2\left(2\right)\)

Từ (1) và (2) ta có dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2-10x+27=2\\\sqrt{6-x}+\sqrt{x-4}=2\end{cases}}\)\(\Leftrightarrow x=5\)

Bình luận (0)
NL
24 tháng 8 2020 lúc 20:08

From August, 2020:

đk: \(4\le x\le6\)

Ta có: \(Vt=x^2-10x+27=\left(x-5\right)^2+2\ge2\left(\forall x\right)\)(1)

Áp dụng bất đẳng thức Bunhia ta được:

\(Vp^2=\left(\sqrt{6-x}+\sqrt{x-4}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{6-x}\right)^2+\left(\sqrt{x-4}\right)^2\right]\)

\(=2\left(6-x+x-4\right)=2.2=4\)

=> \(Vp\le2\) (2)

Từ (1) và (2), dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-5\right)^2=0\\6-x=x-4\end{cases}\Rightarrow}x=5\)

Vậy x = 5

Bình luận (0)
 Khách vãng lai đã xóa