Những câu hỏi liên quan
H24
Xem chi tiết
H24
2 tháng 1 2017 lúc 21:05

minh la chi no phai anh

Bình luận (0)
NT
Xem chi tiết
TN
12 tháng 6 2017 lúc 13:02

đề có sai ko nhỉ xài đủ pp mà vừa lẻ vừa xấu hết

Bình luận (0)
NT
26 tháng 6 2017 lúc 9:30

Đề đúng nhé các bạn. Bài này phải sử dụng pp hàm số mới đc. có thể vô ngiệm hoặc nghiệm xấu đấy

Bình luận (0)
LP
Xem chi tiết
H24
24 tháng 12 2016 lúc 10:19

Pro kinh không thể lướt qua

Giao luu: x=3 

có thể quy đồng làm bt; \(!vt!\ge!vp!\) 

Bình luận (0)
H24
24 tháng 12 2016 lúc 15:38

Hay dùng bpt vào giải pt

Bình luận (0)
HP
24 tháng 12 2016 lúc 17:40

=>(x-3)/13+(x-3)/14-[(x-3)/15+(x-3)/16]

=>(x-3)/13+(x-3)/14-(x-3)/15-(x-3)/16=0

=>(x-3).(1/13+1/14-1/15-1/16)=0

vì biểu thức trong ngoặc 2 khác 0 => x-3=0=>x=3

Bình luận (0)
TD
Xem chi tiết
HT
28 tháng 5 2017 lúc 21:36

câu a:

\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)

đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành

\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)

có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)

\(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)\(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)
Bình luận (0)
HT
28 tháng 5 2017 lúc 21:47

Câu b:

Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)

PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)

có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)

\(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)\(t=x\Leftrightarrow x^2=x^2+1VN\)
Bình luận (0)
LP
23 tháng 3 2018 lúc 23:53

b) phương trình đã cho nhân đôi sau đó biến đổi tương đương:

\(\left[\sqrt{x^2+1}-\left(x+3\right)\right]^2=8\)

\(\Leftrightarrow\sqrt{x^2+1}-\left(x+3\right)=\pm2\sqrt{2}\)

c) \(PT\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}=\left(3x+2\right)^2+2\left(3x+2\right)\)

xét: \(f\left(t\right)=t^2+2t\left(t>0\right)\)

      \(f\left(t\right)=2t+2>0\)

\(\Rightarrow\sqrt{\left(x+2\right)^3}=3x+2\)

Tự lm nốt nhé @tran huu dinh

Bình luận (0)
H24
Xem chi tiết
H24
30 tháng 4 2019 lúc 18:08

Giúp vs ạ mk đag cần

Bình luận (0)
H24
30 tháng 4 2019 lúc 18:26

.

Bình luận (0)
H24
30 tháng 4 2019 lúc 18:30

4x2 hay là 4x2 vậy bạn ?

Bình luận (2)
KB
Xem chi tiết
VD
9 tháng 7 2018 lúc 22:57

truoc cai can trong can thu 2 la 4 dung ko?

Bình luận (0)
VH
Xem chi tiết
LD
Xem chi tiết
NA
Xem chi tiết
H24
17 tháng 9 2021 lúc 22:07

\(1.\sqrt{16-8x+x^2}=4-x\)

\(\sqrt{\left(4-x\right)^2}=4-x\)

\(4-x-4+x=0\)

= 0 phương trình vô nghiệm.

\(2.\sqrt{4x^2-12x+9}=2x-3\)

\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)

\(2x-3-2x+3=0\)

= 0 phương trình vô nghiệm.

Bình luận (4)
NT
17 tháng 9 2021 lúc 22:07

a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

hay \(x\le4\)

b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

hay \(x\ge\dfrac{3}{2}\)

Bình luận (0)
NH
17 tháng 9 2021 lúc 22:11

a/ \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\sqrt{\left(4-x\right)^2}=4-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\left|4-x\right|=4-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le4\\\left[{}\begin{matrix}4-x=4-x\left(loại\right)\\4-x=x-4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=4\)

Vậy...

b/ \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\sqrt{\left(2x-3\right)^2}=2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}2x-3=2x-3\left(loại\right)\\2x-3=3-2x\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy...

 

Bình luận (0)