Cho 4a+5b+6c chia het cho11 CMR 5a+9b+6c chia het cho11
(4a+5b+7c) chia het cho 11. Cmr (5a+9b+6c) chia het cho 11 với a,b,c là số tự nhiên
Ho a,b,c E N.bieets (4a+5b+7c) chia het cho 11,cmr (5a+9b+6c) chia hết cho 11
hi!hi! 2 cái l ike là tớ tròn 1600 điểm hỏi đáp
Cho a,b,c thuoc N, biết (4a+5b+7c) chia het cho 11,cmr (5a+9b+6c) chia hết ch0 11. Các thán giúp em vs
Cho 4a+5b+7c chia hết cho 12.
Chứng tỏ: 5a+9b+6c chia hết cho 11
nếu thế thì làm thế này:
Ta có:
\(4a+5b+7c⋮11\)
\(\Rightarrow7\left(4a+5b+7c\right)⋮11\)
\(\Rightarrow28a+35b+49c⋮11\) (1)
Ta xét tổng:
\(\Rightarrow28a+35b+49c+5a+9b+6c⋮11\)
\(\Rightarrow33a+44b+55c⋮11\)
\(\Rightarrow11\left(3a+4b+5c\right)⋮11\) (2)
Từ (1) và (2) \(\Rightarrow5a+9b+6c⋮11\)
CHỨNG MINH : 4a + 5b + 7c chia hết cho 11 thì 5a + 9b + 6c cũng chia hết cho 11
Cho a,b,c thuoc N biết (4a+5b+7c) chia hết cho 11.cmr (5a+9b+6c) chia hết cho 11. Ai làm được tôi tick cực nhiều. Thề lun, ai thông minh bơi hết zo
Cmr: 2a - 5b + 6c chia het cho 17 neu a - 11b + 3c chia het cho 17 (a,b,c thuoc Z ) .
CMR: 2a-5b+6c chia het cho 17 neu a-11b+3c chia het cho 17 (a,b,c thuoc Z)
Ta có \(a-11b+3c⋮17\)
=> \(19\left(a-11b+3c\right)⋮17\)
=> \(19a-209b+57c⋮17\)
=> ( 17a - 204b + 51c ) + ( 2a - 5b + 6c ) \(⋮\)17
=> 2a - 5b + 6c \(⋮\)17 ( do 17a - 204b + 51c \(⋮\)17 ) ( đpcm )
Cho các số a , b, c . Hãy chứng tỏ rằng nếu 4a + 5b + 7c chia hết cho 11 thí 5a + 9b + 6c cũng chia hết cho 11
ta có: 4a+5b+7c \(⋮\)11
=>16a+20b+28c\(⋮\)11
=>5a+11a+9b+11b+22c+6c\(⋮\)11
=>5a+9b+6c\(⋮\)11 (vì 11a\(⋮\)11 ; 11b\(⋮\)11 và 22c\(⋮\)11)
vậy: nếu 4a+5b+7c \(⋮\)11 thì 5a+9b+6c cũng \(⋮\)11 ( đpcm)
chúc năm mới mọn người học giỏi. k nha.
Xin chào
Bài này khó quá mình chả làm được