Những câu hỏi liên quan
KN
Xem chi tiết
H24
13 tháng 6 2019 lúc 9:11

Phương trình hoàn độ và giao điểm của hai đồ thị hàm số trên là:

\(2x=\frac{18}{x}\left(x\ne0\right)\Leftrightarrow2x^2-18=0\)

\(\Leftrightarrow2\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\) (T/M)

Với x = 3 thì y = 6 ta được A = (3;6)

Với x = -3 thì y = -6 ta được B = (-3;-6)

Vậy tọa độ giao điểm của hai đồ thị hàm số trên là A = (3;6) và B = (-3;-6)

Bình luận (0)
H24
13 tháng 6 2019 lúc 9:13

hoàn độ -> hoành độ giùm t. Đánh lanh tay quá chả để ý mà đăng luôn.:V

Bình luận (0)
LH
Xem chi tiết
TL
13 tháng 9 2015 lúc 12:10

Gọi A (xo; yo) là giao điểm của hai đồ thị

\(\in\) đồ thị hàm số y = 2x => y= 2xo

\(\in\) đồ thị hàm số y = 18/x => y= 18/xo

=> 2x= 18/xo => 2xo2 = 18 <=> x2o = 9 => x= 3 hoặc xo = - 3

+) x= 3 => y= 6 => A (3;6)

+) xo = -3 => yo = - 6 => A (-3; -6)

Vậy...

* Nhận xét: Để tìm tọa độ giao điểm của hai đồ thị hàm số

- Tìm hoành độ giao điểm :Giải  f(x) = g(x) => x = ....

- Thay x tìm được  vào hàm số y = f(x) hoặc y = g(x) => y =...

Bình luận (0)
HN
Xem chi tiết
DH
Xem chi tiết
Ly
Xem chi tiết
NC
7 tháng 8 2020 lúc 21:21

Hoành độ giao điểm của 2 đồ thị thỏa mãn: 

2x = 18/x 

<=> 2x2 = 18 

<=> x 2 = 9 

<=> x = 3 hoặc x = - 3 

Với x = 3 => y = 6 => Tọa độ giao điểm ( 3; 6 ) 

Với x = - 3 => y = - 6 => Tọa độ giao điểm ( -3; - 6 ) 

Bình luận (0)
 Khách vãng lai đã xóa
KD
Xem chi tiết
HH
11 tháng 7 2017 lúc 15:49

Hoành độ giao điểm 2 đồ  thị là nghiệm của phương trình \(2x=\frac{18}{x}\Rightarrow2x^2=18\Rightarrow x^2=9\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Với \(x=3\Rightarrow y=6\Rightarrow A\left(3;6\right)\)

Với \(x=-3\Rightarrow y=-6\Rightarrow B\left(-3;-6\right)\)

Vậy 2 giao điểm là \(A\left(3;6\right);B\left(-3;-6\right)\)

Bình luận (0)
DT
Xem chi tiết
NT
6 tháng 2 2022 lúc 13:18

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2=-2x+3\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-3=0\\y=x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+3\right)\left(x-1\right)=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;9\right);\left(1;1\right)\right\}\)

Bình luận (1)
ND
Xem chi tiết
HP
20 tháng 12 2020 lúc 14:06

Phương trình hoành độ giao điểm:

\(-x+5=2x-2\Leftrightarrow x=\dfrac{7}{3}\Rightarrow y=\dfrac{8}{3}\Rightarrow\left(\dfrac{7}{3};\dfrac{8}{3}\right)\)

Bình luận (0)
DH
20 tháng 12 2020 lúc 14:15

\(a,\) Hàm số: \(y=-x+5\)

Lấy: \(\left\{{}\begin{matrix}x=1\Rightarrow y=4\\x=2\Rightarrow y=3\end{matrix}\right.\)

Hàm số: \(y=2x-2\)

\(\left\{{}\begin{matrix}x=2\Rightarrow y=2\\x=3\Rightarrow y=4\end{matrix}\right.\)

undefined

\(b,\left\{{}\begin{matrix}y=-x+5\left(d\right)\\y=2x-2\left(d'\right)\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(\left(d\right)\) và \(\left(d'\right)\) là:

\(-x+5=2x-2\)

\(\Leftrightarrow-3x=-7\)

\(\Leftrightarrow x=\dfrac{7}{3}\)

Thay \(x=\dfrac{7}{3}\) vào \(\left(d\right)y=-x+5\) ta được:

\(y=-\dfrac{7}{3}+5\)

\(\Leftrightarrow y=\dfrac{8}{3}\)

Vậy tọa độ giao điểm của hai đường thẳng là \(B\left(\dfrac{7}{3};\dfrac{8}{3}\right)\)

Bình luận (0)
HN
Xem chi tiết
NM
27 tháng 11 2021 lúc 7:54

\(b,\text{PT hoành độ giao điểm: }2x=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow A\left(1;2\right)\)

Bình luận (0)
HN
27 tháng 11 2021 lúc 8:17

làm ơn ai làm nhanh hộ mình với hãy giúp mik 

Bình luận (0)