a/2014=b/20125=c/2016
Tìm M = 4.( a-b ) . ( b-c) - ( c-a )2
Cho các số dương a b c thỏa mãn, ab+bc+ac=2014
chứng minh rằng
\(\frac{a^2+2014}{a+b}+\frac{b^2+2014}{b+c}+\frac{a^2+2014}{c+a}=2\left(a+b+c\right)\)
Do \(ab+bc+ac=2014\) nên từ giả thiết tương đương :
\(\frac{a^2+ab+bc+ac}{a+b}+\frac{b^2+ab+bc+ca}{b+c}+\frac{c^2+ab+bc+ca}{c+a}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b\right)}+\frac{\left(b+c\right)\left(b+a\right)}{a+b}+\frac{\left(c+a\right)\left(c+b\right)}{c+a}\)
\(=a+c+b+a+c+b=2\left(a+b+c\right)\) (đpcm )
1. Tìm số tự nhiên có 3 chữ số \(\overline{abc}=9\left(a^2+b^2+c^2\right)\)
2. giải hpt: \(\left\{{}\begin{matrix}x+y+z=5\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{5}\\y+z^2=1\end{matrix}\right.\)
3.a) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\) Tìm Min \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
b) Cho a,b,c > 0 thỏa mãn \(a^{2014}+b^{2014}+c^{2014}+d^{2014}=4\). Tìm Max \(P=a^2+b^2+c^2+d^2\)
buithianhtho, Vũ Minh Tuấn, Băng Băng 2k6, No choice teen, Akai Haruma, Nguyễn Thanh Hằng, Duy Khang,
@tth_new, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ, @Nguyễn Huy Thắng
Mn giúp e vs ạ! Cần gấp ạ!
Thanks nhiều lắm ạ!
Cho các số dương a,b,c,d thỏa mãn các điều kiện a2+c2=1 và \(\dfrac{a^4}{b}+\dfrac{c^4}{d}=\dfrac{1}{b+d}\).
Chứng minh rằng: \(\dfrac{a^{2014}}{b^{1007}}+\dfrac{c^{2014}}{d^{1007}}=\dfrac{2}{\left(b+d\right)^{1007}}\)
Bài 1: tính tổng
a)1+2-3-4+5+6-7-8+...+ 2013 -2014- 2015- 2016
b)1-2-3-4+5+6-7-8+...+2013+2014-2015-2016
bài 2: rút gọn
a) (a+b- c)-(b+c-a)-(c+a-b)×(a+b -c)
b) (a+b)+(b-c)+(c-a )
Chờ a, b, c là 3 số thực dương thỏa mãn a+b+c=\(a^2+b^2+c^2=a^3+b^3+c^3\) =1 Tính giá trị cua biểu thức
M=\(a^{2014}+b^{2014}+c^{2014}\)
Bác phải đọc cái đề nữa chứ. Đâu phải thấy giông giống là giải y chan đâu. Có thể cái đề của bác lúc trước là x,y,z không âm nên mới giải vậy. Còn nếu x,y,z dương thì phải giải khác.
Ta có:
\(a+a^3+b+b^3+c+c^3\ge2\left(a^2+b^2+c^2\right)\)
Dấu = xảy ra khi \(a=b=c=1\)
Vậy nên không tồn tại giá trị a,b,c thỏa mãn bài toán.
vì a+b+c=1 nên\(a,b,c\le1\)
tc \(a+b+c=a^2+b^2+c^2=a^3+b^3+c^3\)
nên \(a^3+b^3+c^3+a+b+c=2a^2+2b^2+2c^2\)
\(\Leftrightarrow a^3-2a^2+a+b^3-2b^2+b+c^3-2c^2+c=0\)
\(\Leftrightarrow a\left(a-1\right)^2+b\left(b-1\right)^2+c\left(c-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a\left(a-1\right)^2=0\\b\left(b-1\right)^2=0\\c\left(c-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0;a=1\\b=0;b=1\\c=0;c=1\end{cases}}}\)
mà a+b+c=1 nên 1 trong 3 số = 1 và 2 số còn lại =0
thi a= 1 ; b=c=0 thì \(a^{2014}+b^{2014}+c^{2014}=1^{2014}+0^{2014}+0^{2014}=1+0+0=1\)
th2 a=b=0 ; c=1 thì \(a^{2014}+b^{2014}+c^{2014}=0^{2014}+0^{2014}+1^{2014}=1\)
th3 a=c=0 ; b=1 thì \(a^{2014}+b^{2014}+c^{2014}=0^{2014}+1^{2014}+0^{2014}=0+1+0=1\)
Cho a,b c là các số dương và a+b+c=3.
Tìm giá trị nhỏ nhất của biểu thức: \(A=\dfrac{a^{2014}+2013}{b^2+1}+\dfrac{b^{2014}+2013}{c^2+1}+\dfrac{c^{2014}+2013}{a^2+1}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(a^{2014}+\underbrace{1+1+....+1}_{1006}\geq 1007\sqrt[1007]{a^{2014}}=1007a^2\)
\(\Leftrightarrow a^{2014}+1006\geq 1007a^2\)
\(\Rightarrow a^{2014}+2013\geq 1007(a^2+1)\)
\(\Rightarrow \frac{a^{2014}+2013}{b^2+1}\geq \frac{1007(a^2+1)}{b^2+1}\). Hoàn toàn TT với các phân thức còn lại và cộng theo vế:
\(A\geq 1007\left(\frac{a^2+1}{b^2+1}+\frac{b^2+1}{c^2+1}+\frac{c^2+1}{a^2+1}\right)\)
\(\geq 1007.3\sqrt[3]{\frac{(a^2+1)(b^2+1)(c^2+1)}{(b^2+1)(c^2+1)(a^2+1)}}=3021\) (theo AM-GM)
Vậy \(A_{\min}=3021\Leftrightarrow a=b=c=1\)
Cho a,b,c,d à các số nguyên thỏa mãn:
\(\dfrac{a^4}{b}+\dfrac{c^4}{d}=\dfrac{1}{b+d}\)và \(a^2+c^2=1\)
Chứng minh rằng: \(\dfrac{a^{2014}}{b^{1007}}+\dfrac{c^{2014}}{b^{1007}}=\dfrac{1}{\left(b+d\right)^{1007}}\)
cho a/2012 = b/2013 = c/2014 chứng tỏ 4(a-b)(b-c) = (c-a)^2
Đặt: \(\dfrac{a}{2012}=\dfrac{b}{2013}=\dfrac{c}{2014}=k\)
\(\rightarrow a=2012k,b=2013k,c=2014k\)
Vế trái: \(4.\left(2012k-2013k\right)\left(2013k-2014k\right)=4.\left(-1k\right).\left(-1k\right)=4k^2\)
Vế phải: \(\left(2014k-2012k\right)^2=\left(2k\right)^2=4k^2\)
\(\rightarrow\) Vế trái = vế phải = \(4k^2\)
cho a b c d thuộc z thỏa mãn a+b=c+d và a^2+b^2=c^2+d^2 CMR a^2014+b^2014=c^2014+d^2014
Ta có: a2 + b2 = c2 + d2
=> a2 - c2 = d2 - b2
=> (a - c)(a + c) = (d - b)(d + b)
Mà a + b = c + d
=> a - c = d - b
+) Nếu a = c
=> a - c = d - b = 0
=> d = b
=> a2014 = c2014 và d2014 = b2014
=> a2014 + b2014 = c2014 + d2014 (1)
+) Nếu a \(\ne\) c
=> a - c = d - b (khác 0)
=> d \(\ne\) b
Có (a - c)(a + c) = (d - b)(d + b)
=> a + c = d + c (2)
Mà a + b = c + d (3)
Lấy (2) + (3) ta được:
2a + b + c = 2d + b + c
=> 2a = 2d
=> a = d
=> c = b
=> a2014 = d2014 và c2014 = b2014
=> a2014 + b2014 = c2014 + d2014 (4)
Kết hợp (1) và (4) ta được: a2014 + b2014 = c2014 + d2014 (ĐPCM)