Những câu hỏi liên quan
NH
Xem chi tiết
CP
Xem chi tiết
HP
19 tháng 9 2021 lúc 16:21

C = x - x2

C = x(1 - x)

Giá trị nhỏ nhất của C khi: \(\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Bình luận (0)
HP
Xem chi tiết
NL
30 tháng 12 2020 lúc 21:55

Chắc bạn ghi nhầm căn thức thứ 2

\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)

\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)

\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)

\(A\le18\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=z=4\)

Bình luận (0)
NC
Xem chi tiết
NL
16 tháng 5 2019 lúc 22:52

ĐKXĐ: \(x\ge2017\)

- Với \(x=2017\Rightarrow A=\frac{1}{2019}\) (1)

- Với \(x>2017\)

\(A=\frac{\sqrt{x-2016}}{x-2016+2018}+\frac{\sqrt{x-2017}}{x-2017+2017}=\frac{1}{\sqrt{x-2016}+\frac{2018}{\sqrt{x-2016}}}+\frac{1}{\sqrt{x-2017}+\frac{2017}{\sqrt{x-2017}}}\)

\(\Rightarrow A\le\frac{1}{2\sqrt{2018}}+\frac{1}{2\sqrt{2017}}\) (2)

So sánh (1) và (2) ta được \(A_{max}=\frac{1}{2\sqrt{2018}}+\frac{1}{2\sqrt{2017}}\)

Dấu "=" xảy ra khi \(x=4034\)

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 1 2018 lúc 13:45

Đáp án: a= 2017

Bình luận (0)
MH
Xem chi tiết
AD
24 tháng 7 2023 lúc 15:44

\(A=2x^2+2\sqrt{2}x+3\\ =2\left(x^2+\sqrt{2}x+\dfrac{3}{2}\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+1\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}\right)+2\\ =2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\)

Ta có \(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2\ge0\forall x\)

\(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\ge2\forall x\)

Dấu bằng xảy ra khi : \(x+\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x=\dfrac{-\sqrt{2}}{2}\)

Vậy \(Min_A=2\) khi \(x=\dfrac{-\sqrt{2}}{2}\)

Bình luận (0)
ND
Xem chi tiết
DL
24 tháng 8 2019 lúc 19:33

Có \(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4\) (Vì xy = 1)

\(\Rightarrow|x+y|\ge2\)

Dấu "=" xả ra khi \(\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)

Xét x = y = 1 ta được:

\(M=\frac{3}{4}+\left(\sqrt{5.1^{2016}+4.1}-2\right)^{2017}-\frac{1^{2015}}{1^{2016}}\)

\(M=\frac{3}{4}\)

Xét x = y = -1 ta được:

\(M=\frac{3}{4}+\left(\sqrt{5.\left(-1\right)^{2016}+4.\left(-1\right)}\right)^{2017}-\frac{\left(-1\right)^{2015}}{\left(-1\right)^{2016}}\)

\(M=\frac{7}{4}+3^{2017}\)

Vậy với \(xy=1\)và \(|x+y|\)đạt giá trị nhỏ nhất thì M nhận 2 giá trị là \(\orbr{\begin{cases}M=\frac{3}{4}\\M=\frac{7}{4}+3^{2017}\end{cases}}\)

Bình luận (0)
H24
24 tháng 8 2019 lúc 19:33

Có |x+y| lớn hơn hoặc bằng 

|x|+|y| dấu bằng sảy ra <=>

xy lớn hơn hoặc bằng 0

mà xy=1 => |x+y|=|x|+|y| (1)

Ta lại có:|x|+|y|-2\(\sqrt{xy}=\)\(\left(\sqrt{x}-\sqrt{y}\right)^2\)Lớn hơn hoặc bằng 0

=>|x|+|y| lớn hơn hoặc bằng \(2\sqrt{xy}=2\left(2\right)\)

Từ (1) và (2)

=>|x+y| lớn hơn hoặc bằng 2

=>MIN |x+y|=2

Dấu bằng sảy ra 

<=>|x+y|=2

Hay |x|+|y|=\(2\sqrt{xy}\)

=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)

=>\(\sqrt{x}=\sqrt{y}\Rightarrow x=y\)

Mà |x+y|=2

TH1: x+y=2=>x=y=1

Thay vào M ta tính được M=3/4

TH2:x+y=-2 =>  x=y=-1

Thay vào M ta được

M=3/4

Vậy: M=3/4

Bình luận (0)
H24
Xem chi tiết
TN
25 tháng 3 2020 lúc 21:50

Bài 1: 

Ta có |x-8| > 0 với mọi x

=>A=37-|x-8| > 37 với mọi x

Vậy GTLN của A=37 với x-8=0 =>x=8

Bài 2 tương tự nhé

Học tốt :))

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NN
20 tháng 2 2018 lúc 19:40

a)-19

b)22

Bình luận (0)