NT

Những câu hỏi liên quan
NT
Xem chi tiết
HL
Xem chi tiết
H24

ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều 

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
TN
2 tháng 1 2018 lúc 22:06

post ít một thôi

Bình luận (0)
LN
Xem chi tiết
TH
9 tháng 8 2017 lúc 20:56

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=2-\dfrac{1}{100}< 2\)

\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

Vậy \(S< 2\left(đpcm\right).\)

Bình luận (0)
NH
9 tháng 8 2017 lúc 20:59

Câu 1 :

Ta có :

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

........................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)

\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)

\(\Leftrightarrow S< 2\rightarrowđpcm\)

Bình luận (0)
MS
9 tháng 8 2017 lúc 23:52

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

\(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S< 2-\dfrac{1}{100}\)

\(S< 2\rightarrowđpcm\)

Bình luận (0)
TP
Xem chi tiết
HP
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
NL
7 tháng 1 2024 lúc 13:25

Đặt \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)

\(\Rightarrow2A-A=1-\dfrac{1}{2^{100}}\)

\(\Rightarrow A=1-\dfrac{1}{2^{100}}< 1\) (đpcm)

Bình luận (0)
H24
7 tháng 1 2024 lúc 13:39

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

\(2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)

\(2A-A=1-\dfrac{1}{2^{100}}\)

\(A=1-\dfrac{1}{2^{100}}< 1\left(đpcm\right)\)

Bình luận (0)