H24

Những câu hỏi liên quan
MN
Xem chi tiết
TA
23 tháng 4 2023 lúc 8:54

đề là j z ạ

Bình luận (0)
NL
25 tháng 4 2023 lúc 13:00

Đề bài đâu bạn ?

Bình luận (0)
LA
Xem chi tiết
NB
31 tháng 3 2022 lúc 21:34

A 4/5xa

b thay số vào 4/5x20x30=480

Bình luận (0)
LH
Xem chi tiết
QL
Xem chi tiết
H24
23 tháng 1 2021 lúc 14:17

Gõ lại lần cuối, không được nữa nghỉ chơi hoc24:v

Bất đẳng thức cần chứng minh tương đương với $$a^3b^2+b^3c^2+c^3a^2\geq abc(a^2+b^2+c^2)$$Ta có$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$= \displaystyle\LARGE{\sum} {{a^3}} \left( {{b^2} - 2bc + {c^2}} \right) -\displaystyle \LARGE{\sum} {{a^2}} ({b^3} - {c^3})$Mặt khác ta có đẳng thức sau

$${a^2}\left( {{b^3} - {c^3}} \right) + {b^2}\left( {{c^3} - {a^3}} \right) + {c^2}\left( {{a^3} - {b^3}} \right) = {a^2}{\left( {b - c} \right)^2} + {b^2}{\left( {c - a} \right)^2} + {c^2}{\left( {a - b} \right)^2}$$Từ đó dễ dàng thu được$$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$$$= {a^2}{\left( {b - c} \right)^2}\left( {a - b + c} \right) + {b^2}{\left( {c - a} \right)^2}\left( {b - c + a} \right) + {c^2}{(a - b)^2}\left( {c - a + b} \right)$$$$= {S_a}{\left( {b - c} \right)^2} + {S_b}{\left( {c - a} \right)^2} + {S_c}{\left( {a - b} \right)^2}$$Với $${S_a} = {a^2}\left( {a - b + c} \right)$$$${S_b} = {b^2}\left( {b - c + a} \right)$$$${S_c} = {c^2}\left( {c - a + b} \right)$$Do $a,$$b,$$c$ là độ dài ba cạnh tam giác nên rõ ràng $S_a,S_b,S_c$ không âm. Ta thu được điều hiển nhiên.

Bình luận (4)
QL
Xem chi tiết
H24
27 tháng 1 2021 lúc 12:01

Xét hiệu hai vế bất đẳng thức đã cho ta được:

\(VT-VP={\dfrac { \left( a-b \right) ^{2}{c}^{2}}{ \left( b+c \right) \left( c +a \right) \left( a+b+c \right) }}+{\dfrac { \left( b-c \right) ^{2}{a }^{2}}{ \left( a+b \right) \left( c+a \right) \left( a+b+c \right) } }+{\dfrac { \left( ac-{b}^{2} \right) ^{2}}{ \left( a+b \right) \left( b+c \right) \left( a+b+c \right) }}\geqslant 0. \)

Đẳng thức xảy ra khi $a=b=c.$

Bình luận (0)
H24
27 tháng 1 2021 lúc 12:05

Cách khác. 

Quy đồng, ta cần chứng minh:

\(2\,{a}^{3}{c}^{2}+{a}^{2}{b}^{3}-3\,{a}^{2}{b}^{2}c-2\,{a}^{2}b{c}^{2} +2\,{a}^{2}{c}^{3}+a{b}^{4}-3\,a{b}^{2}{c}^{2}+{b}^{4}c+{b}^{3}{c}^{2}\geq 0\)

Sử dụng bất đẳng thức AM-GM, ta có:

\(3\,a{b}^{2}{c}^{2}\leq \dfrac{5}{4}{a}^{2}{c}^{3}+\dfrac{1}{2}\,a{b}^{4}+\dfrac{1}{4} \,{b}^{4}c+{b}^{3}{c}^{2},\\2\,{a}^{2}b{c}^{2}\leq {\dfrac {7\,{a}^{3}{c} ^{2}}{10}}+\dfrac{1}{5}{a}^{2}{b}^{3}+\dfrac{3}{4}{a}^{2}{c}^{3}+{\dfrac {7\,{b}^{4}c }{20}},\\3\,{a}^{2}{b}^{2}c\leq {\dfrac {13\,{a}^{3}{c}^{2}}{10}}+\dfrac{4}{5}{a }^{2}{b}^{3}+\dfrac{1}{2}a{b}^{4}+\dfrac{2}{5}{b}^{4}c \)

Xong :D

 

Bình luận (0)
QL
Xem chi tiết
H24
24 tháng 1 2021 lúc 13:16

[Toán.C35 _ 24.1.2021]

Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?

\(\Rightarrow0-1-13-61-253-1017\)

[Toán.C36 _ 24.1.2021]

Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196

\(\Rightarrow\text{32-12-136-176-186-196}\)

Bình luận (1)
H24
24 tháng 1 2021 lúc 13:24

[Toán.C36 _ 24.1.2021]

Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196

Câu này sai nhé !

Phài là : Điền số còn thiếu vào quy luật sau: 12 - 32 - 136 - 176 - ? - 196

Bình luận (1)
TH
24 tháng 1 2021 lúc 15:27

[Toán.C35 _ 24.1.2021]

Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?

0 - 1 - 13 - 61 - 253 - 1021

Chắc đúng :)

Bình luận (5)
QL
Xem chi tiết
H24
24 tháng 1 2021 lúc 12:50

Xí câu dễ trước

Câu 31.

a) Thay $b=\dfrac{5-3a}{4}$ vào và rút gọn thì cần chứng minh $(5a-3)^2\geqslant 0.$

b) Ta có: \(5^2=\left(2+3\right)\left(2a^2+3b^2\right)\ge\left(2a+3b\right)^2\Rightarrow2a+3b\le5\)

Đẳng thức xảy ra khi \(a=b=1.\)

Bình luận (0)
H24
24 tháng 1 2021 lúc 13:24

Bài 33.

Chuyển về pqr, cần chứng minh:

\({\dfrac { \left( {p}^{2}-3\,q \right) \left( {p}^{3}q-{p}^{2}r-2\,p{q} ^{2}+6\,qr \right) }{2qr \left( {p}^{2}-2\,q \right) }}\geqslant 0 \)

Đây là điều hiển nhiên nếu khai triển biểu thức \({p}^{3}q-{p}^{2}r-2\,p{q}^{2}+6\,qr\) ta sẽ được một đa thức với tất cả hệ số đều dương.

Bình luận (0)
H24
24 tháng 1 2021 lúc 13:21

Câu 32. 

BĐT \(\Leftrightarrow a^2+b^2+c^2\le1^2+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2\)

\(VP=c^2\cdot\dfrac{1}{9c^2}+b^2\cdot\dfrac{1}{4b^2}+a^2\cdot\dfrac{1^2}{a^2}\)

\(=\dfrac{\left(c^2-b^2\right)}{9c^2}+\left(b^2-a^2\right)\left(\dfrac{1}{4b^2}+\dfrac{1}{9c^2}\right)+a^2\left(\dfrac{1}{a^2}+\dfrac{1}{4b^2}+\dfrac{1}{9c^2}\right)\)

\(\ge\left(c^2-b^2\right)\cdot\left(\dfrac{1}{3c}\right)^2+\dfrac{\left(b^2-a^2\right)\left(\dfrac{1}{2b}+\dfrac{1}{3c}\right)^2}{2}+\dfrac{a^2\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{3c}\right)^2}{3}\)

\(\ge\left(c^2-b^2\right)+2\left(b^2-a^2\right)+3a^2=a^2+b^2+c^2\)

Dấu bằng không xảy ra nên ban đầu em tưởng đề sai.

Bình luận (1)
DV
Xem chi tiết
DV
12 tháng 11 2018 lúc 20:51

Ai follow + like cho mình với

Bình luận (0)
QL
Xem chi tiết
HP
21 tháng 1 2021 lúc 16:54

[Toán.C23 _ 21.1.2021]

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\)

Giả thiết trở thành \(2x+9y+21z\le12xyz\)

\(\Leftrightarrow3z\ge\dfrac{2x+8y}{4xy-7}\)

Áp dụng BĐT Cosi và BĐT BSC:

Khi đó \(P=x+2y+3z\)

\(\ge x+2y+\dfrac{2x+8y}{4xy-7}\)

\(=x+\dfrac{11}{2x}+\dfrac{1}{2x}\left(4xy-7+\dfrac{4x^2+28}{4xy-7}\right)\)

\(\ge x+\dfrac{11}{2x}+\dfrac{1}{x}\sqrt{4x^2+28}\)

\(=x+\dfrac{11}{2x}+\dfrac{3}{2}\sqrt{\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{x^2}\right)}\)

\(\ge x+\dfrac{11}{2x}+\dfrac{3}{2}\left(1+\dfrac{7}{3x}\right)\)

\(\ge x+\dfrac{9}{x}+\dfrac{3}{2}\ge\dfrac{15}{2}\)

\(\Rightarrow minP=\dfrac{15}{2}\Leftrightarrow a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\)

Mấy câu có thêm dòng trích từ mấy đề quốc gia, quốc tế gì gì đó đâm ra nản luôn.

Bình luận (3)
TH
21 tháng 1 2021 lúc 18:31

C23 cách khác: Điểm rơi \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\) nên ta đặt \(a=\dfrac{1}{3}x;b=\dfrac{4}{5}y;c=\dfrac{3}{2}z\).

Ta có \(21ab+2bc+8ca\le12\Leftrightarrow\dfrac{28}{5}xy+\dfrac{12}{5}yz+4zx\le12\Leftrightarrow7xy+3yz+5zx\le15\).

Áp dụng bất đẳng thức AM - GM: \(15\ge7ab+3bc+5ca\ge15\sqrt[15]{\left(xy\right)^7.\left(yz\right)^3.\left(zx\right)^5}=15\sqrt[15]{x^{12}y^{10}z^8}\)

\(\Rightarrow x^6y^5z^4\le1\);

\(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3x+\dfrac{5}{2}y+2z=\dfrac{1}{2}\left(\dfrac{6}{x}+\dfrac{5}{y}+\dfrac{4}{z}\right)\ge\dfrac{1}{2}.15\sqrt[15]{\left(\dfrac{1}{x}\right)^6.\left(\dfrac{1}{y}\right)^5.\left(\dfrac{1}{z}\right)^4}=\dfrac{15}{2}.\sqrt[15]{\dfrac{1}{x^6y^5z^4}}\ge\dfrac{15}{2}\).

Đẳng thức xảy ra khi \(x=y=z=1\) tức \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\).Vậy Min P = \(\dfrac{15}{2}\) khi \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\).

P/s: Lời giải nhìn có vẻ đơn giản nhưng muốn tìm điểm rơi thì phải dùng bđt AM - GM suy rộng.

 

 

Bình luận (7)
H24
21 tháng 1 2021 lúc 19:17

Giả sử $P$ đạt Min tại $a=x,b=y,c=z.$ Khi đó: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=1\)\(21xy+2yz+8zx=12\) $(\ast)$

Ta có:\(12=21ab+2bc+8ca=21xy.\left(\dfrac{ab}{xy}\right)+2yz\cdot\left(\dfrac{bc}{yz}\right)+8zx\cdot\left(\dfrac{ca}{zx}\right)\)

\(\ge\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{ab}{xy}\right)^{21xy}\cdot\left(\dfrac{bc}{yz}\right)^{2yz}\cdot\left(\dfrac{ca}{zx}\right)^{8zx}}\quad\)   

\(=\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{a}{x}\right)^{21xy+8zx}\cdot\left(\dfrac{b}{y}\right)^{21xy+2yz}\cdot\left(\dfrac{c}{z}\right)^{2yz+8zx}}\quad\left(1\right)\quad\)

Lại có:

\(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{x}\cdot\dfrac{x}{a}+\dfrac{2}{y}\cdot\dfrac{y}{b}+\dfrac{3}{z}\cdot\dfrac{z}{c}\)

\(\ge\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}\right)\sqrt[\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}\right)]{\left(\dfrac{x}{a}\right)^{\dfrac{1}{x}}\cdot\left(\dfrac{y}{b}\right)^{\dfrac{2}{y}}\cdot\left(\dfrac{z}{x}\right)^{\dfrac{3}{z}}}\quad\left(2\right)\)

\(=\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{a}{x}\right)^{21xy+8zx}\cdot\left(\dfrac{b}{y}\right)^{21xy+2yz}\cdot\left(\dfrac{c}{z}\right)^{2yz+8zx}}\quad\left(1\right)\quad\)

Từ $(1)$ và $(2)$ rõ ràng cần chọn $x,y,z$ sao cho:

\(\dfrac{{\left( {21{\mkern 1mu} xy + 8{\mkern 1mu} zx} \right)}}{{\dfrac{1}{x}}} = {\mkern 1mu} \dfrac{{\left( {21{\mkern 1mu} xy + 2{\mkern 1mu} yz} \right)}}{{\dfrac{2}{y}}} = \dfrac{{\left( {2yz + 8zx} \right)}}{{\dfrac{3}{z}}}\)

Suy ra \(x={\dfrac {5\,y}{12}},y=y,z={\dfrac {15\,y}{8}} \) thế ngược lại $(\ast)$ ta được $x=\dfrac{1}{3};y=\dfrac{4}{5};z=\dfrac{3}{2}$ từ đây dẫn đến lời giải của bạn Tan Thuy Hoang.

Lời giải tuy ngắn nhưng rất kỳ công:D

 

Bình luận (7)
QL
Xem chi tiết
HP
19 tháng 1 2021 lúc 18:46

[Toán.C17_19.1.2021]

Gọi x, y, z là các số nguyên dương thỏa mãn \(a=x+y;b=y+z;c=z+x\)

Khi đó: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\left(1\right)\)

\(\Leftrightarrow\left(x+y\right)^2\left(y+z\right)\left(x-z\right)+\left(y+z\right)^2\left(z+x\right)\left(y-x\right)+\left(z+x\right)^2\left(x+y\right)\left(z-y\right)\ge0\)

\(\Leftrightarrow x^3z+y^3x+z^3y\ge x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\left(2\right)\)

Áp dụng BĐT BSC:

\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

\(\Rightarrow\left(2\right)\) đúng \(\Rightarrow\left(1\right)\) đúng

Bình luận (1)
H24
20 tháng 1 2021 lúc 20:01

VietNam TST, 1996.

Chuẩn hóa \(x^2+y^2+z^2=1.\) Cần chứng minh:

\(6\left(x+y+z\right)\le27xyz+10\)

Ta có: \(1=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Rightarrow x^2y^2z^2\le\dfrac{1}{27}\Rightarrow-\dfrac{\sqrt{3}}{9}\le xyz\le\dfrac{\sqrt{3}}{9}\)

Do đó: \(VP\ge27\cdot\left(-\dfrac{\sqrt{3}}{9}\right)+10=10-3\sqrt{3}>0.\)

Nếu $x+y+z<0$ thì $VP>0>VT$ nên ta chỉ xét khi $x+y+z\geq 0.$

Đặt $\sqrt{3}\geq p=x+y+z>0;q=xy+yz+zx,r=xyz.$

Bất đẳng thức cần chứng minh tương đương với:\(6p\le27r+10\quad\left(1\right)\)

Mà \(x^2+y^2+z^2=1\Leftrightarrow p^2-2q=1\Rightarrow q=\dfrac{\left(p^2-1\right)}{2}\quad\left(2\right)\)

Ta có: $$(x-y)^2(y-z)^2(z-x)^2\geq 0.$$

Chuyển sang \(\textit{pqr}\) và kết hợp với $(2)$ suy ra \({\dfrac {5\,{p}^{3}}{54}}-\dfrac{p}{6}-{\dfrac {\sqrt {2 \left(3- {p}^{2} \right) ^{3}}}{54}}\leq r \)

Từ đây thay vào $(1)$ cần chứng minh:

$$\dfrac{5}{2}p^3-\dfrac{21}{2}p+10\geqslant \dfrac{1}{2}\sqrt{2\left(3-p^2\right)^3}$$

Hay là $$\dfrac{1}{4} \left( 27\,{p}^{4}+54\,{p}^{3}-147\,{p}^{2}-148\,p+346 \right) \left( p-1 \right) ^{2}\geqslant 0.$$

Đây là điều hiển nhiên.

Bình luận (2)
NT
20 tháng 1 2021 lúc 19:58

Ôi trời mấy câu này quen thế :(((

Bình luận (3)