giúp : follow, like
You may follow the cues
-where did you visit?
-Where is it?
-is it far from or near Ha Noi ?
-How did you go there?
Do you like it?
Mn làm giúp tui với
1 like và follow
A 4/5xa
b thay số vào 4/5x20x30=480
ai làm dc mình cho like và follow
Like và follow fanpage để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi :>
Cuộc thi Toán Tiếng Anh VEMC | Facebook
Có câu hỏi hay? Gửi ngay chờ chi:
[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu
-------------------------------------------------------------------
[Toán.C29 _ 23.1.2021]
Người biên soạn câu hỏi: Hồng Sơn
[Toán.C30 _ 23.1.2021]
Người biên soạn câu hỏi: Quoc Tran Anh Le
Trích Moldova, 2006: Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng:
\(a^2\left(\dfrac{b}{c}-1\right)+b^2\left(\dfrac{c}{a}-1\right)+c^2\left(\dfrac{a}{b}-1\right)\ge0\).
Gõ lại lần cuối, không được nữa nghỉ chơi hoc24:v
Bất đẳng thức cần chứng minh tương đương với $$a^3b^2+b^3c^2+c^3a^2\geq abc(a^2+b^2+c^2)$$Ta có$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$= \displaystyle\LARGE{\sum} {{a^3}} \left( {{b^2} - 2bc + {c^2}} \right) -\displaystyle \LARGE{\sum} {{a^2}} ({b^3} - {c^3})$Mặt khác ta có đẳng thức sau
$${a^2}\left( {{b^3} - {c^3}} \right) + {b^2}\left( {{c^3} - {a^3}} \right) + {c^2}\left( {{a^3} - {b^3}} \right) = {a^2}{\left( {b - c} \right)^2} + {b^2}{\left( {c - a} \right)^2} + {c^2}{\left( {a - b} \right)^2}$$Từ đó dễ dàng thu được$$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$$$= {a^2}{\left( {b - c} \right)^2}\left( {a - b + c} \right) + {b^2}{\left( {c - a} \right)^2}\left( {b - c + a} \right) + {c^2}{(a - b)^2}\left( {c - a + b} \right)$$$$= {S_a}{\left( {b - c} \right)^2} + {S_b}{\left( {c - a} \right)^2} + {S_c}{\left( {a - b} \right)^2}$$Với $${S_a} = {a^2}\left( {a - b + c} \right)$$$${S_b} = {b^2}\left( {b - c + a} \right)$$$${S_c} = {c^2}\left( {c - a + b} \right)$$Do $a,$$b,$$c$ là độ dài ba cạnh tam giác nên rõ ràng $S_a,S_b,S_c$ không âm. Ta thu được điều hiển nhiên.
Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>
Cuộc thi Toán Tiếng Anh VEMC | Facebook
Có câu hỏi hay? Gửi ngay chờ chi:
[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu
-------------------------------------------------------------------
[Toán.C37 _ 26.1.2021]
----------------------------------------------------------
Đáp án chuyên mục dãy số quy luật sẽ được giới thiệu trong bài đăng tới nha :>
Xét hiệu hai vế bất đẳng thức đã cho ta được:
\(VT-VP={\dfrac { \left( a-b \right) ^{2}{c}^{2}}{ \left( b+c \right) \left( c +a \right) \left( a+b+c \right) }}+{\dfrac { \left( b-c \right) ^{2}{a }^{2}}{ \left( a+b \right) \left( c+a \right) \left( a+b+c \right) } }+{\dfrac { \left( ac-{b}^{2} \right) ^{2}}{ \left( a+b \right) \left( b+c \right) \left( a+b+c \right) }}\geqslant 0. \)
Đẳng thức xảy ra khi $a=b=c.$
Cách khác.
Quy đồng, ta cần chứng minh:
\(2\,{a}^{3}{c}^{2}+{a}^{2}{b}^{3}-3\,{a}^{2}{b}^{2}c-2\,{a}^{2}b{c}^{2} +2\,{a}^{2}{c}^{3}+a{b}^{4}-3\,a{b}^{2}{c}^{2}+{b}^{4}c+{b}^{3}{c}^{2}\geq 0\)
Sử dụng bất đẳng thức AM-GM, ta có:
\(3\,a{b}^{2}{c}^{2}\leq \dfrac{5}{4}{a}^{2}{c}^{3}+\dfrac{1}{2}\,a{b}^{4}+\dfrac{1}{4} \,{b}^{4}c+{b}^{3}{c}^{2},\\2\,{a}^{2}b{c}^{2}\leq {\dfrac {7\,{a}^{3}{c} ^{2}}{10}}+\dfrac{1}{5}{a}^{2}{b}^{3}+\dfrac{3}{4}{a}^{2}{c}^{3}+{\dfrac {7\,{b}^{4}c }{20}},\\3\,{a}^{2}{b}^{2}c\leq {\dfrac {13\,{a}^{3}{c}^{2}}{10}}+\dfrac{4}{5}{a }^{2}{b}^{3}+\dfrac{1}{2}a{b}^{4}+\dfrac{2}{5}{b}^{4}c \)
Xong :D
Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>
Cuộc thi Toán Tiếng Anh VEMC | Facebook
Có câu hỏi hay? Gửi ngay chờ chi:
[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu
-------------------------------------------------------------------
Khác với nhiều chuyên mục thường thấy gần đây, lần này mình mang đến cho bạn hai dãy số quy luật. Mang tinh thần "học mà chơi", ai có thể giải được nhanh nhất? Ngoài ra, nếu các bạn có dãy số nào hay, hãy gửi nhé :>
[Toán.C35 _ 24.1.2021]
Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?
[Toán.C36 _ 24.1.2021]
Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196
[Toán.C35 _ 24.1.2021]
Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?
\(\Rightarrow0-1-13-61-253-1017\)
[Toán.C36 _ 24.1.2021]
Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196
\(\Rightarrow\text{32-12-136-176-186-196}\)
[Toán.C36 _ 24.1.2021]
Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196
Câu này sai nhé !
Phài là : Điền số còn thiếu vào quy luật sau: 12 - 32 - 136 - 176 - ? - 196
[Toán.C35 _ 24.1.2021]
Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?
0 - 1 - 13 - 61 - 253 - 1021
Chắc đúng :)
Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>
Cuộc thi Toán Tiếng Anh VEMC | Facebook
Có câu hỏi hay? Gửi ngay chờ chi:
[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu
-------------------------------------------------------------------
[Toán.C31 _ 24.1.2021]
a) Cho 3a + 4b = 5. Chứng minh rằng: \(a^2+b^2\ge1\).
b) Cho \(2a^2+3b^2=5.\) Chứng minh rằng: \(2a+3b\le5\).
[Toán.C32 _ 24.1.2021]
Với \(0< a\le b\le c\); \(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{3c}\ge3;\dfrac{1}{2b}+\dfrac{1}{3c}\ge2;\dfrac{1}{3c}\ge1.\)
Chứng minh rằng: \(a^2+b^2+c^2\le\dfrac{49}{36}\).
[Toán.C33 _ 24.1.2021]
Cho a,b,c > 0. Chứng minh rằng:
\(\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2}-\dfrac{1}{2}.\left(\dfrac{a^3+b^3+c^3}{abc}-\dfrac{a^2+b^2+c^2}{ab+bc+ca}\right)\le2.\)
[Toán.C34 _ 23.1.2021]
Cho a,b,c > 0. Chứng minh rằng:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}.\)
Xí câu dễ trước
Câu 31.
a) Thay $b=\dfrac{5-3a}{4}$ vào và rút gọn thì cần chứng minh $(5a-3)^2\geqslant 0.$
b) Ta có: \(5^2=\left(2+3\right)\left(2a^2+3b^2\right)\ge\left(2a+3b\right)^2\Rightarrow2a+3b\le5\)
Đẳng thức xảy ra khi \(a=b=1.\)
Bài 33.
Chuyển về pqr, cần chứng minh:
\({\dfrac { \left( {p}^{2}-3\,q \right) \left( {p}^{3}q-{p}^{2}r-2\,p{q} ^{2}+6\,qr \right) }{2qr \left( {p}^{2}-2\,q \right) }}\geqslant 0 \)
Đây là điều hiển nhiên nếu khai triển biểu thức \({p}^{3}q-{p}^{2}r-2\,p{q}^{2}+6\,qr\) ta sẽ được một đa thức với tất cả hệ số đều dương.
Câu 32.
BĐT \(\Leftrightarrow a^2+b^2+c^2\le1^2+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2\)
\(VP=c^2\cdot\dfrac{1}{9c^2}+b^2\cdot\dfrac{1}{4b^2}+a^2\cdot\dfrac{1^2}{a^2}\)
\(=\dfrac{\left(c^2-b^2\right)}{9c^2}+\left(b^2-a^2\right)\left(\dfrac{1}{4b^2}+\dfrac{1}{9c^2}\right)+a^2\left(\dfrac{1}{a^2}+\dfrac{1}{4b^2}+\dfrac{1}{9c^2}\right)\)
\(\ge\left(c^2-b^2\right)\cdot\left(\dfrac{1}{3c}\right)^2+\dfrac{\left(b^2-a^2\right)\left(\dfrac{1}{2b}+\dfrac{1}{3c}\right)^2}{2}+\dfrac{a^2\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{3c}\right)^2}{3}\)
\(\ge\left(c^2-b^2\right)+2\left(b^2-a^2\right)+3a^2=a^2+b^2+c^2\)
Dấu bằng không xảy ra nên ban đầu em tưởng đề sai.
Ai có instagram k follow + like cho mình với cảm ơn : _cpo.04_
Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha. Các bạn hãy giúp đỡ chúng mình phát triển cuộc thi :>
Cuộc thi Toán Tiếng Anh VEMC | Facebook
Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :> Chuyên mục đang cần câu hỏi hay, mong các bạn ủng hộ :>
[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu
-------------------------------------------------------------------
[Toán.C22 _ 21.1.2021]
Cho tam giác ABC không tù. Chứng minh rằng:
\(\dfrac{sinB.sinC}{sinA}+\dfrac{sinC.sinA}{sinB}+\dfrac{sinA.sinB}{sinC}\ge\dfrac{5}{2}\)
[Toán.C23 _ 21.1.2021]
Trích Vietnam TST, 2001: Cho a,b,c > 0 và 21ab + 2bc + 8ca \(\le12\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\).
[Toán.C24 _ 21.1.2021]
Trích VEMC, 2018:
Hai nhà toán học người Nga gặp nhau trên một chuyến bay.
"Nếu tôi nhớ không nhầm thì ông có ba cậu con trai," nhà toán học tên là Ivan nói. "Đến nay chúng bao nhiêu tuổi rồi?"
"Tích số tuổi của chúng là 36," nhà toán học tên là Igor đáp, "và tổng số tuổi của chúng đúng bằng ngày hôm nay."
"Tôi xin lỗi," Ivan nói sau một phút suy nghĩ, "nhưng từ những thông tin đó tôi vẫn không thể biết được tuổi của chúng."
"À tôi quên không kể cho ông, đứa con nhỏ tuổi nhất của tôi có mái tóc màu đỏ."
"A, giờ thì rõ rồi," Ivan nói. "Giờ tôi đã biết chính xác ba cậu con trai của ông bao nhiêu tuổi."
Làm sao mà Ivan biết được?
[Toán.C25 _ 21.1.2021]
Một chuyên gia về xác suất nhờ một người tung đồng xu 200 lần rồi ghi lại kết quả. Khi người đó đưa kết quả cho anh ta, vừa nhìn một cái đã biết người kia bịa ra chứ không phải thật sự tung cả ngần ấy lần. Bạn có biết anh ta làm thế nào không?
[Toán.C23 _ 21.1.2021]
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\)
Giả thiết trở thành \(2x+9y+21z\le12xyz\)
\(\Leftrightarrow3z\ge\dfrac{2x+8y}{4xy-7}\)
Áp dụng BĐT Cosi và BĐT BSC:
Khi đó \(P=x+2y+3z\)
\(\ge x+2y+\dfrac{2x+8y}{4xy-7}\)
\(=x+\dfrac{11}{2x}+\dfrac{1}{2x}\left(4xy-7+\dfrac{4x^2+28}{4xy-7}\right)\)
\(\ge x+\dfrac{11}{2x}+\dfrac{1}{x}\sqrt{4x^2+28}\)
\(=x+\dfrac{11}{2x}+\dfrac{3}{2}\sqrt{\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{x^2}\right)}\)
\(\ge x+\dfrac{11}{2x}+\dfrac{3}{2}\left(1+\dfrac{7}{3x}\right)\)
\(\ge x+\dfrac{9}{x}+\dfrac{3}{2}\ge\dfrac{15}{2}\)
\(\Rightarrow minP=\dfrac{15}{2}\Leftrightarrow a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\)
Mấy câu có thêm dòng trích từ mấy đề quốc gia, quốc tế gì gì đó đâm ra nản luôn.
C23 cách khác: Điểm rơi \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\) nên ta đặt \(a=\dfrac{1}{3}x;b=\dfrac{4}{5}y;c=\dfrac{3}{2}z\).
Ta có \(21ab+2bc+8ca\le12\Leftrightarrow\dfrac{28}{5}xy+\dfrac{12}{5}yz+4zx\le12\Leftrightarrow7xy+3yz+5zx\le15\).
Áp dụng bất đẳng thức AM - GM: \(15\ge7ab+3bc+5ca\ge15\sqrt[15]{\left(xy\right)^7.\left(yz\right)^3.\left(zx\right)^5}=15\sqrt[15]{x^{12}y^{10}z^8}\)
\(\Rightarrow x^6y^5z^4\le1\);
\(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3x+\dfrac{5}{2}y+2z=\dfrac{1}{2}\left(\dfrac{6}{x}+\dfrac{5}{y}+\dfrac{4}{z}\right)\ge\dfrac{1}{2}.15\sqrt[15]{\left(\dfrac{1}{x}\right)^6.\left(\dfrac{1}{y}\right)^5.\left(\dfrac{1}{z}\right)^4}=\dfrac{15}{2}.\sqrt[15]{\dfrac{1}{x^6y^5z^4}}\ge\dfrac{15}{2}\).
Đẳng thức xảy ra khi \(x=y=z=1\) tức \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\).Vậy Min P = \(\dfrac{15}{2}\) khi \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\).
P/s: Lời giải nhìn có vẻ đơn giản nhưng muốn tìm điểm rơi thì phải dùng bđt AM - GM suy rộng.
Giả sử $P$ đạt Min tại $a=x,b=y,c=z.$ Khi đó: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=1\); \(21xy+2yz+8zx=12\) $(\ast)$
Ta có:\(12=21ab+2bc+8ca=21xy.\left(\dfrac{ab}{xy}\right)+2yz\cdot\left(\dfrac{bc}{yz}\right)+8zx\cdot\left(\dfrac{ca}{zx}\right)\)
\(\ge\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{ab}{xy}\right)^{21xy}\cdot\left(\dfrac{bc}{yz}\right)^{2yz}\cdot\left(\dfrac{ca}{zx}\right)^{8zx}}\quad\)
\(=\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{a}{x}\right)^{21xy+8zx}\cdot\left(\dfrac{b}{y}\right)^{21xy+2yz}\cdot\left(\dfrac{c}{z}\right)^{2yz+8zx}}\quad\left(1\right)\quad\)
Lại có:
\(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{x}\cdot\dfrac{x}{a}+\dfrac{2}{y}\cdot\dfrac{y}{b}+\dfrac{3}{z}\cdot\dfrac{z}{c}\)
\(\ge\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}\right)\sqrt[\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}\right)]{\left(\dfrac{x}{a}\right)^{\dfrac{1}{x}}\cdot\left(\dfrac{y}{b}\right)^{\dfrac{2}{y}}\cdot\left(\dfrac{z}{x}\right)^{\dfrac{3}{z}}}\quad\left(2\right)\)
\(=\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{a}{x}\right)^{21xy+8zx}\cdot\left(\dfrac{b}{y}\right)^{21xy+2yz}\cdot\left(\dfrac{c}{z}\right)^{2yz+8zx}}\quad\left(1\right)\quad\)
Từ $(1)$ và $(2)$ rõ ràng cần chọn $x,y,z$ sao cho:
\(\dfrac{{\left( {21{\mkern 1mu} xy + 8{\mkern 1mu} zx} \right)}}{{\dfrac{1}{x}}} = {\mkern 1mu} \dfrac{{\left( {21{\mkern 1mu} xy + 2{\mkern 1mu} yz} \right)}}{{\dfrac{2}{y}}} = \dfrac{{\left( {2yz + 8zx} \right)}}{{\dfrac{3}{z}}}\)
Suy ra \(x={\dfrac {5\,y}{12}},y=y,z={\dfrac {15\,y}{8}} \) thế ngược lại $(\ast)$ ta được $x=\dfrac{1}{3};y=\dfrac{4}{5};z=\dfrac{3}{2}$ từ đây dẫn đến lời giải của bạn Tan Thuy Hoang.
Lời giải tuy ngắn nhưng rất kỳ công:D
Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>
Cuộc thi Toán Tiếng Anh VEMC | Facebook
Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :>
[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu
-------------------------------------------------------------------
[Toán.C16 _ 19.1.2021]
Người biên soạn câu hỏi: Lê Hà Vy
Trích Vietnam TST, 1996: Chứng minh rằng với x,y,z là các số thực bất kì ta có bất đẳng thức:
\(6\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le27xyz+10\left(x^2+y^2+z^2\right)^{\dfrac{3}{2}}\).
[Toán.C17 _ 19.1.2021]
Người biên soạn câu hỏi: Lê Hà Vy
Trích IMO, 1983: Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì:
\(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\).
[Toán.C18 _ 19.1.2021]
Người biên soạn câu hỏi: Nguyễn Bình An
Trích IMO, 2001: Cho a,b,c > 0. Chứng minh rằng:
\(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge1.\)
[Toán.C19 _ 19.1.2021]
Người biên soạn câu hỏi: Quoc Tran Anh Le
Trích Vasile Cirtoaje: Cho a,b,c,d lớn hơn hoặc bằng 0 thỏa mãn a + b + c + d = 4. Chứng minh rằng:
\(16+2abcd\ge3\left(ab+ac+ad+bc+bd+cd\right)\).
*4 câu hỏi này xin được tặng các bạn một chút GP khi các bạn giải được hoàn hảo. Mong các thầy cô sẽ trao giải cho các bạn!
[Toán.C17_19.1.2021]
Gọi x, y, z là các số nguyên dương thỏa mãn \(a=x+y;b=y+z;c=z+x\)
Khi đó: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\left(1\right)\)
\(\Leftrightarrow\left(x+y\right)^2\left(y+z\right)\left(x-z\right)+\left(y+z\right)^2\left(z+x\right)\left(y-x\right)+\left(z+x\right)^2\left(x+y\right)\left(z-y\right)\ge0\)
\(\Leftrightarrow x^3z+y^3x+z^3y\ge x^2yz+xy^2z+xyz^2\)
\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\left(2\right)\)
Áp dụng BĐT BSC:
\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)
\(\Rightarrow\left(2\right)\) đúng \(\Rightarrow\left(1\right)\) đúng
VietNam TST, 1996.
Chuẩn hóa \(x^2+y^2+z^2=1.\) Cần chứng minh:
\(6\left(x+y+z\right)\le27xyz+10\)
Ta có: \(1=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Rightarrow x^2y^2z^2\le\dfrac{1}{27}\Rightarrow-\dfrac{\sqrt{3}}{9}\le xyz\le\dfrac{\sqrt{3}}{9}\)
Do đó: \(VP\ge27\cdot\left(-\dfrac{\sqrt{3}}{9}\right)+10=10-3\sqrt{3}>0.\)
Nếu $x+y+z<0$ thì $VP>0>VT$ nên ta chỉ xét khi $x+y+z\geq 0.$
Đặt $\sqrt{3}\geq p=x+y+z>0;q=xy+yz+zx,r=xyz.$
Bất đẳng thức cần chứng minh tương đương với:\(6p\le27r+10\quad\left(1\right)\)
Mà \(x^2+y^2+z^2=1\Leftrightarrow p^2-2q=1\Rightarrow q=\dfrac{\left(p^2-1\right)}{2}\quad\left(2\right)\)
Ta có: $$(x-y)^2(y-z)^2(z-x)^2\geq 0.$$
Chuyển sang \(\textit{pqr}\) và kết hợp với $(2)$ suy ra \({\dfrac {5\,{p}^{3}}{54}}-\dfrac{p}{6}-{\dfrac {\sqrt {2 \left(3- {p}^{2} \right) ^{3}}}{54}}\leq r \)
Từ đây thay vào $(1)$ cần chứng minh:
$$\dfrac{5}{2}p^3-\dfrac{21}{2}p+10\geqslant \dfrac{1}{2}\sqrt{2\left(3-p^2\right)^3}$$
Hay là $$\dfrac{1}{4} \left( 27\,{p}^{4}+54\,{p}^{3}-147\,{p}^{2}-148\,p+346 \right) \left( p-1 \right) ^{2}\geqslant 0.$$
Đây là điều hiển nhiên.
Ôi trời mấy câu này quen thế :(((