Cho tam giác ABC. Trên tia đối của các tia AB, AC lần lượt lấy các điểm M,N sao cho AM = AB ; AN = AC. Gọi I và K lần lượt là trung điểm của BC và MN. CMR :
a) MN = BC
b) tam giác AKN = tam giác AIC
c) A là trung điểm của IK
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy E sao cho AE = AC. Đường thẳng qua A cắt các cạnh DE và BC lần lượt ở M và N. Chứng minh rằng: AM = AN.
cho tam giác ABC . gọi E,D lần lượt là trung điểm của các cạnh AB, AC. trên tia đối tia BD lấy điểm M sao cho DM=DB. Trên tia đối của tia EC lấy điểm N sao cho EN = EC. Cmr: a, AM//BC b, Ba điểm M,A,N thẳng hàng c, AB+BC>2BD
a Xét tứ giác ABCM có
D là trung điểm chun của AC và BM
=>ABCM là hình bình hành
=>AM//BC và AM=BC
b: Xét tứ giác ANBC có
E là trung điểm chung của AN và BC
=>ANBC là hình bình hành
=>AN//BC và AN=BC
=>M,A,N thẳng hàng
cho tam đều ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm M, N sao cho AM=AN. Gọi P, Q ,R lần lượt là trung điểm của AB, AN, MC. Chứng minh rằng PQR là tam giác đều
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD sao AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. Gọi M,N lần lượt là các điểm trên tia BC và ED sao cho CM = EN.
CMR: M, A,N thẳng hàng
tg ADE=ABC( AB=AD;AC=AE;A đối đỉnh)
=>gocE=C
xet tg AEN va tgACM bằng nhau( CM=EN;AE=AC;E=C)
=> goc NAE=CAM ( 2 goc nay o vi tri đối đỉnh nên M;A;N
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD sao AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. Gọi M,N lần lượt là các điểm trên tia BC và ED sao cho CM = EN. CMR: M, A,N thẳng hàng
cho tam giác abc, AB=4,8cm; BC=3,6cm; AC= 6,4cm. trên AC lấy điểm E sao cho AE=2,4cm; trên AB lấy điểm D sao cho AD= 3,2 cm. gọi giao điểm của BC với ED là F. tính DF
Có: tam giác ABC đồng dạng với tam giác ADE
=>AB/AD=AC/AE
Có AB/AD=AB/2AB=1/2
AC/AE=AC/2AC=1/2
Vậy tam giác ABC đồng dạng với tam giác ADE the tỉ số đồng dạng là 1/2
cho tam giác ABC, trên tia đối tia AB lấy điểm M sao cho AB=AM. Trên tia AC lấy điểm N sao cho AC=AN. Chứng minh:
a) tam giác ABC=tam giác AMN
b) chứng minh BC//MN
c) gọi P và Q lần lượt là trung điểm của BC và MN. Chứng minh A là trung điểm của PQ
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh AC lấy điểm D sao cho AB = AD. Trên tia đối của tia AB lấy điểm E sao cho AC = AE a) chứng minh tam giác ABC = tam giác ADE b) gọi M , N lần lượt là trung điểm của BC và DE , chứng minh AM = AN c) tính số đo của góc MAN
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: AM=ED/2
AN=BC/2
mà ED=BC
nên AM=AN
các bạn giải gấp cho mk vs ạ
Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED sao cho CM = EN. Chứng minh ba điểm M; A; N thẳng hàng.
Xét \(\Delta ABC\) và \(\Delta ADE\) có:
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) ( tính chất 2 góc đối đỉnh )
\(AC=AE\left(gt\right)\)
Vậy \(\Delta ABC=\) \(\Delta ADE\left(c.g.c\right)\)
\(\Rightarrow\widehat{C}=\widehat{E}\) ( 2 góc tương ứng )
Xét \(\Delta MAC\) và \(\Delta NAE\) có:
\(AC=AE\left(gt\right)\)
\(\widehat{C}=\widehat{E}\left(cmt\right)\)
\(CM=EN\left(gt\right)\)
Vậy \(\Delta MAC=\Delta NAE\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAC}=\widehat{MAE}\) ( 2 góc tương ứng )
Ta có: \(\widehat{MAC}+\widehat{CAD}+\widehat{DAN}=\widehat{NAE}+\widehat{DAN}+\widehat{CAD}\)
\(\Rightarrow\widehat{MAN}=\widehat{CAE}\)
\(\Rightarrow\) 3 điểm \(M,A,N\) thẳng hàng.
Xét △ABC và △ADE ta có:
⇒ ∠ABC = ∠AED (2 góc tương ứng)
Xét △ACM và △AEN ta có:
⇒ ∠CAM = ∠EAN (2 góc tương ứng)
Mà ∠CAM + ∠CAN = 180o
⇒ ∠EAN + ∠CAN = 180o
⇒ ∠MAN = 180o
⇒ Ba điểm M, A, N thẳng hàng (đcpm).
Bài 1: Cgo tam giác ABC, trên các tia đối của các tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB, AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trrung điểm của MN
Bài 2: Cho góc nhọn xOy, trên tia Ox lấy 2 điểm A và B sao cho OA<OB. Trên tia Oy lấy 2 điểm C và D sao cho OC = OB, OD = OA. Hai đoạn thẳng AC và BD cắt nhau tại E. Chứng minh tam giác EAB = tam giác EDC
Bài 3: Cho tam giác ABC, AB<AC. Gọi M là trung điểm của BC. Vẽ BH vuông góc với AM, CK vuông góc với AM. Chứng minh rằng BH = CK
Bài 1 :
Xét tam giác ABC và ADE có :
góc EAD = góc CAB (đối đỉnh)
CA=EA (gt)
BA=DA (gt)
suy ra tam giác ABC=ADE (c.g.c)
suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )
Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM
Xét tam giác ENA và CMA có:
EN = CM ( cmt)
góc E = góc C (cmt)
AE = AC (gt)
suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng )
Xét tam giác NDA và MBA có:
góc D= góc B (cmt)
ND = MB (cmt )
DA = BA (cmt )
suy ra tam giác NDA = MBA (c.g.c)suy ra góc NAD = góc MAB
Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )
Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ
suy ra 3 điểm M,A,N thẳng hàng (2)
Từ (1) và (2 ) suy ra A là trung điểm của MN
( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)