Bài 2: so sánh
a)√9+16 Và √9+√16
b)√9.16 và √9.√16
So sánh hai số √(9.16) và √9 . √16
A. 9 . 16 = 9 . 16
B. 9 . 16 < 9 . 16
C. 9 . 16 > 9 . 16
D. không thể so sánh
Bài 6: So sánh
a) 0,(26) và 0,261 b) 0,15 và 0,14(9)
a: 0,(26)<0,261
b: 0,15>0,14(9)
So sánh
a)2.\(\sqrt{5}\) và 5
b)\(\dfrac{1}{3}.\sqrt{16}\) và \(\sqrt{12}\)
a) Ta có :\(20< 25\Rightarrow\sqrt{20}< \sqrt{25}\Leftrightarrow2\sqrt{5}< 5\)
b) Ta có : \(\dfrac{16}{9}< 12\Rightarrow\sqrt{\dfrac{16}{9}}< \sqrt{12}\Leftrightarrow\dfrac{1}{3}\cdot\sqrt{16}< \sqrt{12}\)
a: \(2\sqrt{5}=\sqrt{20}\)
\(5=\sqrt{25}\)
mà 20<25
nên \(2\sqrt{5}< 5\)
b: \(\dfrac{1}{3}\cdot\sqrt{16}=\sqrt{\dfrac{1}{9}\cdot16}=\sqrt{\dfrac{16}{9}}\)
\(\sqrt{12}=\sqrt{\dfrac{108}{9}}\)
mà 16<9
nên \(\dfrac{1}{3}\sqrt{16}< \sqrt{12}\)
Câu 4: Tính và so sánh
a. căn bậc 81 phần căn bậc 16 và 81 16
b.căn bậc 16+ 25 và căn bậc 16 + căn bậc 25
a: \(\dfrac{\sqrt{81}}{\sqrt{16}}=\dfrac{9}{4}=\dfrac{36}{16}< \dfrac{81}{16}\)
b: \(\sqrt{16+25}=\sqrt{41}< 9=\sqrt{16}+\sqrt{25}\)
CHO A=1+2+2^2+2^3+..+2^9;B=5.2^8.SO SÁNHA VÀ B
A=1+2+2^2+2^3+....+2^9
2A=2+2^2+2^3+....+2^10
2A-A=2^10-1
A=2^10-1/2
B=5.2^8=(2^2+1).2^8=2^10+2^8
=>B>A
2A = 2(1 + 2 + 22 + .... + 29 )
= 2 + 22 + 23 + ..... + 210
2A - A = (2 + 22 + 23 + ..... + 210) - (1 + 2 + 22 + .... + 29 )
A = 210 - 1
B = 5.28 = (22 + 1).28 = 210 + 28
210 - 1 < 210 + 28
=> A < B
Bài 1: So sánh
a) \(-2^{30}\) và \(-3^{30}\)
b) \(35^5\) và \(6^{10}\)
Bài 2: Tính giá trị biểu thức
a) \(\dfrac{\left(-3\right)^{10}.15^5}{25^3.\left(-9\right)^7}\)
b) \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)
\(1,\\ a,2< 3\Rightarrow2^{30}< 3^{30}\Rightarrow-2^{30}>-3^{30}\\ b,6^{10}=6^{2\cdot5}=\left(6^2\right)^5=36^5>35^5\left(36>35\right)\)
\(2,\\ a,\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\dfrac{3^{10}\cdot5^5\cdot3^5}{5^6\cdot3^{14}}=\dfrac{3}{5}\\ b,\left(8x-1\right)^{2x+1}=5^{2x+1}\\ \Leftrightarrow8x-1=5\\ \Leftrightarrow x=\dfrac{3}{4}\)
Bài 2:
a: Ta có: \(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)
\(=\dfrac{-3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^{14}}\)
\(=-\dfrac{3}{5}\)
b: Ta có: \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)
\(\Leftrightarrow8x-1=5\)
\(\Leftrightarrow8x=6\)
hay \(x=\dfrac{3}{4}\)
Bài 1:
a: \(-2^{30}=-8^{10}\)
\(-3^{30}=-27^{10}\)
mà 8<27
nên \(-2^{30}>-3^{30}\)
b: \(35^5=35^5\)
\(6^{10}=36^5\)
mà 35<36
nên \(35^5< 6^{10}\)
Bài :So sánh
a) 10750 và 7375
b) 290 và 535
c)1218 và 2716 . 169
d)1920 và 98 . 516
a) 10750 và 7375
10750 = ( 1072 )25
7375 = ( 753 )25
Mà 1072 < 753
Vậy 10750 < 7375
3 phần sau tương tự
so sánh:
a,2\(^{24}\)và 3\(^{16}\)
b, (-16)\(^{11}\)và (-32)\(^9\)
c, (2\(^2\))\(^3\)và 2\(^2\)\(^3\)
câu c là (2\(^2\))\(^3\)và 2 mũ 2 mũ 3 nha
\(a,2^{24}=\left(2^3\right)^8=8^8< 9^8=\left(3^2\right)^8=3^{16}\\ b,16^{11}=\left(2^4\right)^{11}=2^{44}< 2^{45}=\left(2^5\right)^9=32^9\\ \Rightarrow\left(-16\right)^{11}>\left(-32\right)^9\\ c,\left(2^2\right)^3=2^6< 2^8=2^{2^3}\)
So sánh A và B:
A= (3.4.2^16)^2 : 11.2^13.4^11-16^9 và B = 16^18 : 33^16
Cảm ơn nhiều
A=-2/11+6/7+1/2+-9/11+1/7
B=(9/16+8/27)+(1+7/16+-19/27)
So sánh A và B
Ta có: A = \(\frac{-2}{11}+\frac{6}{7}+\frac{1}{2}+\frac{-9}{11}+\frac{1}{7}\)
A = \(\left(\frac{-2}{11}+\frac{-9}{11}\right)+\left(\frac{6}{7}+\frac{1}{7}\right)+\frac{1}{2}\)
A = \(-1+1+\frac{1}{2}\)
A = \(\frac{1}{2}\)
B = \(\left(\frac{9}{16}+\frac{8}{27}\right)+\left(1+\frac{7}{16}+\frac{-19}{27}\right)\)
B = \(\frac{9}{16}+\frac{8}{27}+1+\frac{7}{16}-\frac{19}{27}\)
B = \(\left(\frac{9}{16}+\frac{7}{16}\right)+1+\left(\frac{8}{27}-\frac{19}{27}\right)\)
B = \(1+1-\frac{11}{27}\)
B = \(\frac{43}{27}\)
Mà 1/2 < 43/27 (Vì 1/2 < 1; 43/27 > 1)
=> A < B
Giải
\(A=\frac{-2}{11}+\frac{6}{7}+\frac{1}{2}+\frac{-9}{11}+\frac{1}{7}\)
\(\Leftrightarrow A=\left(\frac{-2}{11}+\frac{-9}{11}\right)+\left(\frac{6}{7}+\frac{1}{7}\right)+\frac{1}{2}\)
\(\Leftrightarrow A=\frac{-11}{11}+\frac{7}{7}+\frac{1}{2}\)
\(\Leftrightarrow A=-1+1+\frac{1}{2}\)
\(\Leftrightarrow A=\frac{1}{2}< 1\left(1\right)\)
\(B=\left(\frac{9}{16}+\frac{8}{27}\right)+\left(1+\frac{7}{16}+\frac{-19}{27}\right)\)
\(\Leftrightarrow B=\left(\frac{9}{16}+\frac{7}{16}\right)+\left(\frac{8}{27}+\frac{-19}{27}\right)+1\)
\(\Leftrightarrow B=\frac{16}{16}+\frac{-11}{27}+1\)
\(\Leftrightarrow B=1+\frac{-11}{27}+1\)
\(\Leftrightarrow B=2+\frac{-11}{27}\)
\(\Leftrightarrow B=\frac{43}{27}\)\(>1\left(2\right)\)
Từ (1) và (2) suy ra A < B