Những câu hỏi liên quan
LL
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
NB
10 tháng 7 2017 lúc 19:00

Giả sử :

\(x\le y\)(1)

=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{y}\)

=> \(\frac{2}{3}\ge\frac{2}{y}\)

=> \(\frac{1}{3}\ge\frac{1}{y}\Rightarrow3\ge y\)(2)

Lại có :

\(\frac{1}{x}+\frac{1}{y}\le\frac{2}{x}\)

=> \(\frac{2}{3}\le\frac{2}{x}\Rightarrow3\le x\)(3)

Từ (1) , (2) , (3) 

=> \(3\le x\le y\le3\)

=> x = y = 3

Bình luận (0)
NT
Xem chi tiết
TD
2 tháng 9 2015 lúc 10:18

mình biết làm nhưng dài quá bạn tra trên google là đc

Bình luận (0)
H24
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết

 Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

tích nha

Bình luận (0)
NL
2 tháng 4 2016 lúc 18:02

mk giải đc bài này ở dạng lớp 7..nè 

Bình luận (0)
PB
Xem chi tiết