Tinh nhanh
4x52+81:3\(^2\)-(13-4)\(^2\)
tinh nhah
1+5+9+13+17+...+81+85
B=1*2+2*3+3*4+4*5+...+99*100
tinh nhanh
a)25*100+75*101
b)729+2995
c)325*48
d)1+5+9+13+17+...+81+85
e)B=1*2+2*3+3*4+4*5+...+99*100
1) Cho đa thức \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-...+13.x^2-14.x+14\) Tính f(13)
2) Tính : \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\)
Bài 2:
x=13 nên x+1=14
\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)
\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)
=14-x=1
x=13 nên x+1=14
f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14
=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14
=14-x=1
tinh
a ) 33 . 18 - 33 . 12
b ) 9 . 22 . 13 + 87 . 39
c ) 4 . 5 2 - 81 : 32
d ) 32 . 22 - 33 .19
e ) 24 . 5 - [ 131 - ( 13 - 4 )2 ]
g ) 100 . { 250 : [ 450 - ( 4 . 53 - 22 . 25 ) ] }
\(3^3.18-3^3.12=3^3.2.3^2-3^3.2^2.3=3^5.2-3^4.2^2=3^4.2.\left(3-2\right)=3^4.2=162\\ \)
\(3^3.18-3^3.12=3^3.\left(18-12\right)=27.6=162\)
b) 9 . 22 . 13 + 87 . 39 = 198 . 13 + 87 . 3 . 13 = 198 . 13 + 261 . 13 = 13 . (198 + 261) = 13 . 459 = 5967
c) 4 . 52 - 81 : 32 = 4 . 25 - 81 : 9 = 100 - 9 = 91
d) 32 . 22 - 33 . 19 = 9 . 22 - 33 . 19 = 198 - 627 = - 429
e) 24 . 5 - [ 131 - (13 - 4)2 ] = 120 - (131 - 92) = 120 - (131 - 81) = 120 - 50 = 70
g) 100 . { 250 : [ 450 - (4 . 53 - 22 . 25) ] } = 100 . { 250 : [ 450 - (4 . 125 - 4 .25) ] }
= 100 . [ 250 : (450 - 400) ]
= 100 . (250 : 50)
= 100 . 5
= 500
1) Thuc hien phep tinh:
a) 4^6 × 9^2 / 6^3 × 8^2
b) 5^6 × 15^4 /5^4 × 3^3
c) 3^9 - 2^3 × 3^7 + 2^10 × 3^2 - 2^13 / 3^10 - 2^2 × 3^7 + 2^10 × 3^3 - 2^12
d) (1/9)^10 : (1/3)^20
e) (1/64)^5 × (1/4)^7
2) Chung minh rang:
a)2014^100+2014^99 chia het cho 2015
b) 4^13+32^5-8^8 chia het cho 5
c) 81^27-27^9-9^13 chia het cho 405
Help me!! Pleass!!
4*52+81/32-(13-4)2
tính nhanh
A = 1 + 2 + 3 + 4 + ... + 25
B = 2 + 4 + 6 + 8 + ... + 50
C = 1 + 5 + 9 + 13 + ... + 81
a) Số các số hạng trong A là: \(\left(25-1\right):1+1=25\) (số)
Tổng A bằng: \(\left(25+1\right)\cdot25:2=325\)
b) Số các số hạng trong B là: \(\left(50-2\right):2+1=25\) (số)
Tổng B bằng: \(\left(50+2\right)\cdot25:2=650\)
c) Số các số hạng trong C là: \(\left(81-1\right):4+1=21\) (số)
Tổng C bằng: \(\left(81+1\right)\cdot21:2=861\)
#Urushi
Bài 1: Tính
a) -3/20 + -7/4
b) 6 2/3 - 4 2/3
c) -3/10 + 7/12
d) 35/-9 . 81/7
e) -2/5 - -3/4
f) 5/23 . 7/26 + 5/23 . 9/26
g) -3/12 : 4/15
h) 1 1/6 - 3 1/3
i) -2/5 . (-3) + 3/8 . 4/-10
j) -13/17 + (13/-21 + -4/17)
a) \(\dfrac{-3}{20}\) + \(\dfrac{-7}{4}\) =\(\dfrac{-3}{20}\) + \(\dfrac{-35}{20}\) = -2
b) 6 và \(\dfrac{2}{3}\) - 4 và \(\dfrac{2}{3}\) = 2
c) \(\dfrac{-3}{10}\) + \(\dfrac{7}{12}\) = \(\dfrac{-18}{60}\) + \(\dfrac{35}{60}\) =\(\dfrac{17}{60}\)
d) \(\dfrac{35}{-9}\) . \(\dfrac{81}{7}\) = \(\dfrac{-35}{9}\) . \(\dfrac{81}{7}\) = 45
e) \(\dfrac{-2}{5}\) - \(\dfrac{-3}{4}\) = \(\dfrac{-8}{20}\) - \(\dfrac{-15}{20}\) = \(\dfrac{-8}{20}\) + \(\dfrac{15}{20}\) =\(\dfrac{7}{20}\)
f) \(\dfrac{5}{23}\) . \(\dfrac{7}{26}\) + \(\dfrac{5}{23}\) .\(\dfrac{9}{26}\) = \(\dfrac{5}{23}\) . ( \(\dfrac{7}{26}\) + \(\dfrac{9}{26}\) )= \(\dfrac{5}{23}\) . \(\dfrac{8}{13}\) = \(\dfrac{40}{299}\)
g) \(\dfrac{-3}{12}\) : \(\dfrac{4}{15}\) =\(\dfrac{-3}{12}\) . \(\dfrac{15}{4}\) =\(\dfrac{-5}{8}\)
h) 1 và \(\dfrac{1}{6}\) - 3 và \(\dfrac{1}{3}\) =\(\dfrac{7}{6}\) -\(\dfrac{10}{3}\) = \(\dfrac{-13}{6}\)
i) \(\dfrac{-2}{5}\) . (-3) + \(\dfrac{3}{8}\) . \(\dfrac{4}{-10}\) =(\(\dfrac{-2}{5}\) .\(\dfrac{-4}{10}\)) + [(-3) . \(\dfrac{3}{8}\)
= \(\dfrac{4}{25}\) + \(\dfrac{-9}{8}\) = \(\dfrac{32}{200}\) + \(\dfrac{-225}{200}\) = \(\dfrac{-193}{200}\)
j) \(\dfrac{-13}{17}\) + (\(\dfrac{13}{-21}\) + \(\dfrac{-4}{17}\) )
= ( \(\dfrac{-13}{17}\) + \(\dfrac{-4}{17}\) )+\(\dfrac{-13}{21}\)
= -1+\(\dfrac{-13}{21}\)
= \(\dfrac{-21}{21}\) + \(\dfrac{-13}{21}\) = \(\dfrac{-34}{21}\)
Khôi nguyễn
4x-5 = 16
45 - 2x-1 =29
(2+x)2 = 144
(x-5)2 = 81
(13-x)4 = 81
\(4^{x-5}=16\)
\(4^{x-5}=4^2\)
\(x-5=2\)
\(x=2+5\)
\(x=7\)
\(45-2^{x-1}=29\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
\(\left(2+x\right)^2=144\)
\(\left(2+x\right)^2=12^2\)
\(2+x=12\)
\(x=12-2\)
\(x=10\)
\(\left(x-5\right)^2=81\)
\(\left(x-5\right)^2=9^2\)
\(x-5=9\)
\(x=14\)
\(\left(13-x\right)^4=81\)
\(\left(13-x\right)^4=3^4\)
\(13-x=3\)
\(x=13-3\)
\(x=10\)
\(...4^{x-5}=4^2\Rightarrow x-5=2\Rightarrow x=7\)
\(...2^{x-1}=45-29=16\Rightarrow2^{x-1}=2^4\Rightarrow x-1=4\Rightarrow x=5\)
\(...\Rightarrow\left(2+x\right)^2=12^2\Rightarrow\left[{}\begin{matrix}2+x=12\\2+x=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-14\end{matrix}\right.\)
\(...\Rightarrow\left(x-5\right)^2=9^2\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
\(...\Rightarrow\left(13-x\right)^4=3^4\Rightarrow\left[{}\begin{matrix}13-x=3\\13-x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=16\end{matrix}\right.\)
Mình quên mũ 2 với mũ 4 là chia ra 2 trường hợp, sửa lại nhé:
\(\left(2+x\right)^2=144\)
\(\left(2+x\right)^2=12^2\)
Th1:
\(2+x=12\)
\(x=10\)
Th2:
\(2+x=-12\)
\(x=-14\)
\(\left(x-5\right)^2=81\)
\(\left(x-5\right)^2=9^2\)
Th1:
\(x-5=9\)
\(x=14\)
Th2:
\(x-5=-9\)
\(x=-4\)
\(\left(13-x\right)^4=81\)
\(\left(13-x\right)^4=3^4\)
Th1:
\(13-x=3\)
\(x=10\)
Th2:
\(13-x=-3\)
\(x=16\)