Violympic toán 7

H24

1) Cho đa thức \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-...+13.x^2-14.x+14\) Tính f(13) 

2) Tính : \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\) 

NT
24 tháng 2 2022 lúc 22:34

Bài 2: 

x=13 nên x+1=14

\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)

\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)

=14-x=1

Bình luận (0)
46
24 tháng 2 2022 lúc 22:38

x=13 nên x+1=14

f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14

=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14

=14-x=1

  
Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
TM
Xem chi tiết
MM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
GT
Xem chi tiết
DS
Xem chi tiết
NL
Xem chi tiết
AO
Xem chi tiết